IMPORTANT FORMULAS

I. PROBABILITY

Number of combinations of k out of n objects: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, where $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n .(0!=1$. Probability of disjunction: $P(A \cup B)=P(A)+P(B)-P(A B)$. Odds for A : $P(A) / P\left(A^{c}\right)$.
Conditional probability of A given B : $P(A \mid B)=P(A B) / P(B)$ if $P(B)>0$. So $P(A B)=P(A \mid B) P(B)$.
Theorem of total probability: $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)$.
Bayes' theorem: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}$.
Independence of A and B : $P(A B)=P(A) P(B)$; equivalently (if $P(B)>0), P(A \mid B)=P(A)$.
Variance of a random variable Y with expectation $\mu: V(Y)=E\left(Y^{2}\right)-\mu^{2}=E\left((Y-\mu)^{2}\right)$.
Expectation (i.e., mean) of a discrete random variable Y : $E(Y)=y_{1} P\left(Y=y_{1}\right)+y_{2} P\left(Y=y_{2}\right)+\ldots$. $E\left(Y_{1}+Y_{2}\right)=E\left(Y_{1}\right)+E\left(Y_{2}\right) . V(a Y)=a^{2} V(Y)$. If Y_{1} and Y_{2} independent, $V\left(Y_{1}+Y_{2}\right)=V\left(Y_{1}\right)+V\left(Y_{2}\right)$. Bernoulli random variable (success/failure): $E(Y)=p, V(Y)=p q$, where $q=1-p$.
Binomial random variable (successes in n trials): $P(Y=k)=\binom{n}{k} p^{k} q^{n-k}, E(Y)=n p, V(Y)=n p q$. Geometric random variable (trials until first success): $P(Y=n)=q^{n-1} p, E(Y)=1 / p, V(Y)=q / p^{2}$. If Y is normal with parameters μ and σ^{2}, the standard normal $Z=(Y-\mu) / \sigma$ has parameters 0 and 1 . Central Limit Theorem: For any sequence Y_{1}, Y_{2}, \ldots of IID random variables with expectation μ and variance σ^{2}, the cdf of Z is the limit, as $n \rightarrow \infty$, of the cdf of $\left(Y_{1}+Y_{2}+\ldots+Y_{n}-n \mu\right) /(\sigma \sqrt{n})$.

II. STATISTICS

Sample: n IID random variables Y_{1}, \ldots, Y_{n} with $E\left(Y_{i}\right)=\mu$ (population mean) and $V\left(Y_{i}\right)=\sigma^{2}$ (population variance). Sample mean: $\bar{Y}=\left(Y_{1}+\ldots+Y_{n}\right) / n . E(\bar{Y})=\mu, V(\bar{Y})=\sigma^{2} / n$. Sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}\right)$. Measured values of \bar{Y} and $S: \bar{y}$ and s. Large sample $1-\alpha$ confidence interval for a proportion: $\left(\bar{y}-z_{\alpha / 2}\right.$ se, $\bar{y}+z_{\alpha / 2}$.se), where se $=$ $\sqrt{\bar{y}(1-\bar{y}) / n}$ and $z_{\alpha / 2}$ is the point to the right of which the area under the standard normal pdf is $\alpha / 2$. For a $1-\alpha$ confidence interval of width $\leq d$, it is enough to have $n \geq\left(z_{\alpha / 2} / d\right)^{2}[4 p(1-p)]$. Large sample $1-\alpha$ confidence interval for a mean: $\left(\bar{y}-z_{\alpha / 2} \frac{s}{\sqrt{n}}, \bar{y}+z_{\alpha / 2} \frac{s}{\sqrt{n}}\right)$; use σ (not $\left.s\right)$ if known. Small sample 1- α confidence interval for a mean: $\left(\bar{y}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \bar{y}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right.$), where $t_{\alpha / 2, n-1}$ is the point to the right of which the area under the pdf of the t distribution with $n-1$ degrees of freedom is $\alpha / 2$. (All t-based tests assume that the population distribution is normal.) Significance level α for hypothesis testing: Probability of type I error (rejecting true H_{0}). Hypothesis testing for a mean: To test $H_{0}: \mu=\mu_{0}$, compute $t=\frac{\bar{y}-\mu_{0}}{s / \sqrt{n}}$ and see if $|t|>t_{\alpha / 2, n-1}$ for a two-sided H_{1} (i.e., $\mu \neq \mu_{0}$), or compare t to $t_{\alpha, n-1}$ for a one-sided H_{1} (e.g., $\mu>\mu_{0}$).
Comparison of two independent means: To test $H_{0}: \mu_{X}=\mu_{Y}$, compute $t=\frac{\bar{x}-\bar{y}}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}$ (pooled variance: $\left.s_{p}^{2}=\frac{(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}}{n+m-2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}}{n+m-2}\right)$ and see if $|t|>t_{\alpha / 2, n-1}$ for a twosided H_{1} (i.e., $\mu_{X} \neq \mu_{Y}$), or compare t to $t_{\alpha, n+m-2}$ for a one-sided H_{1} (e.g., $\mu_{X}>\mu_{Y}$).
Goodness of fit test: To test H_{0} : the distribution of Y_{1}, \ldots, Y_{k} is multinomial with parameters n, p_{1}, \ldots, p_{k}, compute $c=\sum_{i=1}^{k} \frac{\left(y_{i}-n p_{i}\right)^{2}}{n p_{i}}$ and see if $c>\chi_{k-1}^{2}$ (check that all $n p_{i} \geq 5$ or $n>5 k$).
Testing for independence of X and Y : If the data for X and Y are arranged in r rows and c columns, use the χ^{2} test with $(r-1)(c-1)$ degrees of freedom.

INTRODUCTION TO LOGIC

I. LOGIC, ARGUMENTS, AND PROPOSITIONS

1. The main object of logic is to evaluate arguments: to find out which arguments are good (or bad), and how good (or how bad) they are.
2. An argument is an ordered pair whose first member is a set of propositions (the premises of the argument) and whose second member is a proposition (the conclusion of the argument).
3. A proposition is something that can be non-derivatively true or false, and is typically expressed by a declarative sentence. Different sentences can express the same proposition (e.g., "Alice is taller than Bob" and "Bob is shorter than Alice").

II. RELATIONS BETWEEN PREMISES AND CONCLUSIONS

1. An argument is (deductively) valid exactly if it is necessary that its conclusion is true if its premises are true (i.e., its premises guarantee its conclusion), and is invalid otherwise.
2. An argument is (inductively) strong exactly if (and to the extent that) it is invalid and its conclusion is probable given its premises (i.e., its premises render its conclusion probable but do not guarantee it), and is weak exactly if (and to the extent that) it is invalid and its conclusion is improbable given its premises.
3. An argument is confirmatory exactly if (and to the extent that) it is invalid and its premises raise the probability of its conclusion (i.e., its conclusion is more probable given that its premises are true than given that its premises are false), and is disconfirmatory exactly if (and to the extent that) it is invalid and its premises lower the probability of its conclusion.
4. A classification of invalid arguments (in the examples, "IAU" stands for "After conducting a thorough survey of celestial objects, the International Astronomical Union has declared"):

Invalid	Strong: $P(H \mid E)$ high	Neither: $P(H \mid E)$ medium	Weak: $P(H \mid E)$ low
Confirmatory: $P(H \mid E)>P(H)$	IAU: "No large asteroid will hit the Earth next year". So: No large asteroid will hit.	IAU: "50\% chance a large asteroid will hit next year". So: A large asteroid will hit.	IAU: "30\% chance a large asteroid will hit next year". So: A large asteroid will hit.
Neither: $P(H \mid E)=P(H)$	Paris is in France. So: No large asteroid will hit the Earth next year.	Paris is in France. So: This fair coin will come up heads when tossed.	Paris is in France. So: A large asteroid will hit the Earth next year.
Disconfirmatory: $P(H \mid E)<P(H)$	IAU: "30\% chance a large asteroid will hit next year". So: No large asteroid will hit.	IAU: "50\% chance a large asteroid will hit next year". So: No large asteroid will hit.	IAU: "No large asteroid will hit the Earth next year". So: A large asteroid will hit.

III TRUTH AND PROBABILITY OF PREMISES

1. Truth of premises: A valid argument with false premises is not good in the fullest sense. An argument is sound exactly if it is valid and its premises are all true, and is unsound exactly if it is not sound (i.e., either it is invalid or it is valid but its premises are not all true). The conclusion of a sound argument is true, but an argument with a true conclusion need not be valid or sound.
2. Probability of the premises: True premises can be improbable; e.g., any particular sequence of heads and tails in 100 tosses of a coin is improbable, but one sequence is true (i.e., will occur). To be good in the fullest sense, an argument must have premises that are not only true but also as close to certain (i.e., maximally probable) as possible.
3. Deductive logic evaluates arguments in terms of validity; inductive logic evaluates arguments in terms of strength and confirmation. Logic does not examine the truth of the premises.

COMBINATORICS

I. INTRODUCTION

1. The object of combinatorics is to find the number of possible outcomes of a given procedure (i.e., the number of ways in which the procedure can be performed).
2. The procedure may be complex, consisting of performing simpler procedures in successive steps. E.g., choosing a username and password consists of first choosing a username and then choosing a password.
3. Notation: $\langle a, b\rangle$ is the ordered sequence whose first member is a and whose second member is b, and $\{a, b\}$ is the unordered set whose two members are a and b. So $\langle a, b\rangle \neq<b, a\rangle$ but $\{a, b\}=\{b, a\}$.

II. THE MULTIPLICATION RULE

1. The rule: Consider k procedures $P_{1}, P_{2}, \ldots, P_{k}$. Suppose P_{1} can be performed in n_{1} ways, P_{2} in n_{2} ways, \ldots, and P_{k} in n_{k} ways. Then the complex procedure which consists of successively performing P_{1}, P_{2}, \ldots, and P_{k} can be performed in $n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$ ways.
2. Example: If there are $n_{1}=800$ ways of choosing a username and $n_{2}=1,000$ ways of choosing a password, then there are $n_{1} \cdot n_{2}=800,000$ ways of first choosing a username and then choosing a password.

III. PERMUTATIONS

1. A permutation of n objects is an ordered sequence of the n objects. It corresponds to a way of arranging the n objects in a sequence. E.g., there are two permutations of the two objects a and b : $<a, b>$ and $<b, a>$.
2. The number of permutations of n objects is n ! (" n factorial"), defined as $1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ (by definition, 0 ! = 1). E.g., there are $3!=1 \cdot 2 \cdot 3=6$ permutations of 3 objects a, b, and c. They are: $\langle a, b, c\rangle,\langle a, c, b\rangle,\langle b, a, c\rangle,\langle b, c, a\rangle,\langle c, a, b\rangle$, and $\langle c, b, a\rangle$.

IV. COMBINATIONS

1. A combination of k out of n objects $(k \leq n)$ is a collection (i.e., an unordered set) consisting of k out of the n objects. It corresponds to a way of choosing k out of the n objects without paying attention to the order of the k chosen objects. E.g., there are three combinations of 2 out of 3 objects a, b, and $c:\{a, b\},\{a, c\}$, and $\{b, c\}$.
2. The number of combinations of k out of n objects is $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. E.g., there are $\binom{4}{2}=\frac{4!}{2!(4-2)!}=\frac{1 \cdot 2 \cdot 3 \cdot 4}{(1 \cdot 2) \cdot(1 \cdot 2)}=6$ combinations of 2 out of 4 objects a, b, c, and d. They are: $\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\}$, and $\{c, d\}$.

V. COMBINATORIAL PROBABILITY

1. If there are n possible outcomes of a procedure and a total of m of them satisfy a given condition A, then the probability that A will be satisfied is the ratio of m over $n: P(A)=m / n$. (This assumes that all n possible outcomes are equally probable.)
2. Example: There are $n=6$ possible outcomes of throwing a fair die and $m=3$ of them satisfy the condition A that a side with an even number of spots will come up, so $P(A)=3 / 6=0.5$.

THE UNCONDITIONAL PROBABILITY CALCULUS

I. SAMPLE SPACES

1. A sample space is a set of possibilities (usually, possible outcomes of a procedure) that are considered to be of interest and to be mutually exclusive and collectively exhaustive.
2. Example 1: Suppose one tosses a coin. If one is interested in the probability that the coin will come up heads, one can choose the sample space \{Heads, Tails\}. This is a discrete sample space: it has a finite number of members. (A sample space with a countably infinite number of members is also discrete.) By choosing this sample space, one effectively declares that the possibility that the coin will stand on its edge is not of interest.
3. Example 2: Suppose again one tosses a coin. If one is interested in the probability that it will take longer than 15 seconds from the moment the coin is tossed until the moment the coin settles, one can choose the sample space [0, 1000]; i.e., the interval of real numbers from 0 to 1000. Each member of this sample space corresponds to a possible length of time in seconds until the coin settles. This is a continuous sample space: it has an uncountably infinite number of members. By choosing this sample space, one effectively declares that the possibilities in which the coin takes more than 1000 seconds to settle are not of interest.
4. One often chooses a sample space whose members are all equally probable, but this is not always possible (consider a biased coin in example 1). Combinatorics can be used to find out the size of the sample space.

II. THE OBJECTS OF PROBABILITY: EVENTS (OR PROPOSITIONS)

1. Not everything can have a probability. It makes no sense to talk of the probability of an object, for example of a coin (as opposed to, e.g., the probability that the coin will come up heads). Only events can have probabilities (e.g., the event that the coin will come up heads). One can alternatively assign probabilities to propositions (e.g., the proposition that the coin will come up heads).
2. An event is (and a proposition is taken to be) a set of possibilities; i.e., a subset of a sample space. Example: Suppose a fair die is thrown. Consider the sample space $\left\{\right.$ Side $_{1}$, Side $_{2}$, Side $_{3}$, Side $_{4}$, Side $_{5}$, Side $\left._{6}\right\}$, where Side $_{i}$ is the possibility that the side with i spots will come up. The proposition Even that a side with an even number of spots will come up is the set $\left\{\mathrm{Side}_{2}\right.$, Side $_{4}$, Side $\left._{6}\right\}$, a subset of the sample space. (For technical reasons, if a sample space is continuous then usually not every subset of it counts as a proposition, but this complication will be ignored.)
3. Since the possibilities in the sample space are considered to be mutually exclusive and collectively exhaustive, exactly one of them will be actualized. A proposition is true or false (and an event occurs or does not occur) depending on whether the actualized possibility is or not a member of the proposition. E.g., if Side $_{4}$ is actualized (i.e., the side with 4 spots comes up), then the proposition Even is true (and the event Even occurs).
4. The contradiction is the proposition that is false no matter what possibility is actualized; i.e., the empty set (the set that has no member, denoted by \varnothing). The tautology is the proposition that is true no matter what possibility is actualized; i.e., the sample space (denoted by Ω).

III. COMPLEX PROPOSITIONS

1. The negation of a proposition A is the complement of A (denoted by A^{c}), namely the set whose members are the members of the sample space that are not in A. The negation of A is also
denoted by $\sim A$ and is true exactly if A is false. E.g., Even $^{c}=\left\{\right.$ Side $_{1}$, Side $_{3}$, Side $\left._{5}\right\}=$ Odd (the proposition that a side with an odd number of spots will come up).
2. The conjunction of propositions A and B is the intersection of A and B (denoted by $A \cap B$), namely the set whose members are the common members of A and B. The conjunction of A and B is also denoted by $A \& B$, or just by $A B$, and is true exactly if both A and B are true. E.g., if Large $=\left\{\right.$ Side $_{4}$, Side $_{5}$, Side $\left._{6}\right\}$ is the proposition that a side with a large number of spots (i.e., at least 4) will come up, then Even \cap Large $=\left\{\right.$ Side $_{4}$, Side $\left._{6}\right\}$. For any $A, A \cap A^{c}=\varnothing$.
3. The disjunction of propositions A and B is the union of A and B (denoted by $A \cup B$), namely the set whose members are the members of A plus the members of B. The disjunction of A and B is also denoted by $A \vee B$ and is true exactly if A is true or B is true (or both). E.g., Even \cup Large $=\left\{\right.$ Side $_{2}$, Side $_{4}$, Side $_{5}$, Side $\left._{6}\right\}$. For any $A, A \cup A^{c}=\Omega$.
4. De Morgan's Laws: $(A \cap B)^{c}=A^{c} \cup B^{c}$ and $(A \cup B)^{c}=A^{c} \cap B^{c}$.

IV. RELATIONS BETWEEN PROPOSITIONS

1. Propositions A and B are (mutually) incompatible exactly if they cannot be both true; namely, they are disjoint (i.e., they have no common member: $A \cap B=\varnothing$). E.g., Even \cap Odd $=\varnothing$.
2. Proposition A entails proposition B exactly if the truth of A guarantees the truth of B; namely, $A \subseteq B$ (i.e., every member of A is a member of B). E.g., Even \cap Odd \subseteq Even.

V. THE AXIOMS OF PROBABILITY

Given a sample space Ω and a set of propositions (i.e., subsets of the sample space), a probability measure is a function P that assigns to every proposition a real number and that satisfies the following three conditions (axioms):

A1. For any proposition $A, P(A) \geq 0$. (Probabilities cannot be negative.)
A2. $P(\Omega)=1$. (The totality of possibilities, namely the tautology, has probability 1.)
A3. For any (finite or infinite) countable collection of propositions A_{1}, A_{2}, \ldots that are pairwise incompatible (i.e., $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$), $P\left(A_{1} \cup A_{2} \cup \ldots\right.$) $=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots$. (The probability of the disjunction of pairwise incompatible propositions is the sum of the probabilities of those propositions.) Special case: If $A \cap B=\varnothing$, then $P(A \cup B)=P(A)+P(B)$.

VI. BASIC PROBABILITY THEOREMS

1. Probability of negation: $P\left(A^{c}\right)=1-P(A)$.
2. Probability of contradiction: $P(\varnothing)=0$.
3. If $A \subseteq B$, then $P(A) \leq P(B)$.
4. Upper bound on probabilities: for every proposition $A, P(A) \leq 1$.
5. Probability of disjunction: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

VII. INDEPENDENCE

1. Propositions A and B are independent exactly if $P(A \cap B)=P(A) P(B)$. This definition is intended to capture the intuitive notion that the truth of A is unrelated to the truth of B.
2. Independence should not be confused with incompatibility (i.e., disjointness). If propositions A and B are incompatible, then the truth of A entails that B is not true, so A and B are in general not independent. Formally, if $A \cap B=\varnothing$, then $P(A \cap B)=0$, which differs from $P(A) P(B)$ except if $P(A)=0$ or $P(B)=0$.

THE CONDITIONAL PROBABILITY CALCULUS

I. CONDITIONAL PROBABILITIES

1. The conditional probability of A given B is $P(A \mid B)=P(A \cap B) / P(B)$ if $P(B)>0$ (and is for our purposes undefined if $P(B)=0$). For given B, the function $P(\bullet \mid B)$ satisfies the probability axioms.
2. Example: Suppose a fair die is thrown. The conditional probability of S_{6} (i.e., that the side with 6 spots will come up) given Even (i.e., given that a side with an even number of spots will come up) is $P\left(\mathrm{~S}_{6} \mid\right.$ Even $)=1 / 3=(1 / 6) /(3 / 6)=P\left(\mathrm{~S}_{6} \cap\right.$ Even $) / P$ (Even). The effect of the condition is to shrink the sample space. Similarly, $P\left(\mathrm{~S}_{6} \mid \mathrm{Odd}\right)=0$ because $P\left(\mathrm{~S}_{6} \cap \mathrm{Odd}\right)=0$.

II. PROBABILITIES OF CONJUNCTIONS

1. Conjunction of two propositions: $P(A B)=P(A \mid B) P(B)$, from the definition above.
2. Conjunction of three propositions: $P(A B C)=P(A \mid B C) P(B C)=P(A \mid B C) P(B \mid C) P(C)$.

III. THE THEOREM OF TOTAL PROBABILITY

1. The theorem: $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)$.
2. Proof: $P(A)=P\left(A B \cup A B^{c}\right)=P(A B)+P\left(A B^{c}\right)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)$.
3. Example: Urn 1 contains 70 black and 30 white balls, and urn 2 contains 40 black and 60 white balls. A fair coin is tossed to select one of the urns, and a ball is randomly drawn from the selected urn. What is the probability that the ball is black? $P($ Black $)=P\left(\right.$ Black $\left.\mid \operatorname{Urn}_{1}\right) P\left(\operatorname{Urn}_{1}\right)+$ $P\left(\right.$ Black $\left.\mid \mathrm{Urn}_{2}\right) P\left(\mathrm{Urn}_{2}\right)=0.7 \cdot 0.5+0.4 \cdot 0.5=0.55$.

IV. BAYES' THEOREM

1. The theorem: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.
2. Proof: $P(A \mid B)=P(A B) / P(B)=P(B A) / P(B)=P(B \mid A) P(A) / P(B)$.
3. Corollary: Use the theorem of total probability to rewrite the denominator in Bayes's theorem. $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}$.
4 Example: A test for AIDS comes out positive (+) with probability 0.97 if the patient has AIDS and comes out negative (-) with probability 0.95 if the patient does not have AIDS. If 2% of people have AIDS, what is the probability that a patient has AIDS given that the result of the test was positive? $P(A I D S \mid+)=\frac{P(+\mid A I D S) P(A I D S)}{P(+\mid A I D S) P(A I D S)+P\left(+\mid A I D S^{c}\right) P\left(A I D S^{c}\right)}=\frac{0.97 \cdot 0.02}{0.97 \cdot 0.02+0.05 \cdot 0.98}=0.284$.

V. INDEPENDENCE AND CONFIRMATION

1. The definition of " A and B are independent", namely $P(A B)=P(A) P(B)$, can be equivalently rewritten as $P(A \mid B)=P(A)$, as $P(A \mid B)=P\left(A \mid B^{c}\right)$, as $P(A)=P\left(A \mid B^{C}\right)$, and so on (interchanging A with B), provided that the conditional probabilities are defined. A and B are independent exactly if A^{c} and B^{c} are independent, and also exactly if A and B^{c} are independent.
2. The definition of " B (incrementally) confirms A ", namely $P(A B)>P(A) P(B)$, can be equivalently rewritten as $P(A \mid B)>P(A)$, as $P(A \mid B)>P\left(A \mid B^{c}\right)$, as $P(A)>P\left(A \mid B^{c}\right)$, and so on (interchanging A with B), provided that the conditional probabilities are defined. So confirmation amounts to positive correlation and is symmetric: B confirms A exactly if A confirms B. Moreover, A confirms B exactly if A^{c} confirms B^{C}, and also exactly if A disconfirms B^{c}.

DISCRETE RANDOM VARIABLES

I. RANDOM VARIABLES

1. Just as a variable is something that can take different values, a random variable is something that can take different values with different probabilities. Example: the number of heads in two successive tosses of a fair coin is a random variable: it can take the values 0 , 1 , and 2 , with probabilities $0.25,0.50$, and 0.25 respectively.
2. Formally, a random variable is a function from a sample space to real numbers. In the coin example, the sample space is $\{\mathrm{TT}, \mathrm{TH}, \mathrm{HT}, \mathrm{HH}\}$, and the random variable "number of heads in two tosses" is the function that assigns the number 0 to TT, 1 to TH, 1 to HT, and 2 to HH .
3. The above random variable is discrete: the set of its possible values (i.e., $\{0,1,2\}$) is discrete. A continuous random variable (e.g., temperature) has a continuous set of possible values.

II. BASIC DEFINITIONS

1. The probability mass function (abbreviation: pmf) of a discrete random variable Y is the function that gives, for every possible value of Y, the probability that Y takes that value. In the coin example, where Y is the number of heads in two tosses, the pmf of Y is the function that assigns to the value 0 the probability 0.25 , to the value 1 the probability 0.50 , and to the value 2 the probability 0.25 . Notation: $P(Y=0)=0.25, P(Y=1)=0.50$, and $P(Y=2)=0.25$.
2. The expectation (or expected value, or mean value) of a discrete random variable Y whose possible values are y_{1}, y_{2}, \ldots is: $E(Y)=y_{1} P\left(Y=y_{1}\right)+y_{2} P\left(Y=y_{2}\right)+\ldots$. In our example, the expectation is $0 \cdot 0.25+1 \cdot 0.50+2 \cdot 0.25=1$. (On average, one can "expect" one head in two tosses.)
3. The variance of a random variable Y with expectation μ is: $V(Y)=E\left(Y^{2}\right)-\mu^{2}=E\left((Y-\mu)^{2}\right)$. In our example, the square of the number of heads can take the values 0,1 , and 4 , with probabilities $0.25,0.50$, and 0.25 respectively, so $E\left(Y^{2}\right)=0 \cdot 0.25+1 \cdot 0.50+4 \cdot 0.25=1.50$. Then $V(Y)=1.50-$ $1^{2}=0.50$. The square root of the variance of Y is called the standard deviation of Y.
4. Random variables X and Y are independent exactly if, for any sets A and B of numbers among their possible values, $P((X \in A) \cap(Y \in B))=P(X \in A) P(Y \in B)$.

III. BERNOULLI PROCESSES

1. A Bernoulli process is a process that consists of repeated independent and identically distributed (IID) trials, with each trial having only two possible outcomes, called "success" (value 1) and "failure" (value 0). E.g., tossing a fair coin 10 times is a Bernoulli process: each toss is a trial (with heads as success and tails as failure, or the other way around) and the 10 trials are IID (they have identical probabilities of success and failure).
2. A Bernoulli random variable corresponds to each trial: it has two possible values, 1 and 0 , with probabilities p and $q=1-p$ respectively. Its expectation is p, and its variance is $p q$.
3. A binomial random variable corresponds to the number of successes in n trials (e.g., number of heads in n coin tosses), and is the sum of n IID Bernoulli random variables. It can take values $k=0, \ldots, n$, with probabilities: $P(Y=k)=\binom{n}{k} p^{k} q^{n-k}$. It has expectation $n p$ and variance $n p q$. In general, $E\left(Y_{1}+Y_{2}\right)=E\left(Y_{1}\right)+E\left(Y_{2}\right)$, and, for independent Y_{1} and $Y_{2}, V\left(Y_{1}+Y_{2}\right)=V\left(Y_{1}\right)+V\left(Y_{2}\right)$.
4. A geometric random variable corresponds to the number of trials until (and including) the first success (e.g., number of tosses until heads appears). It has infinitely many possible values $(n=1,2, \ldots)$ with probabilities $P(Y=n)=q^{n-1} p$. Its expectation is $1 / p$, and its variance is q / p^{2}.

CONTINUOUS RANDOM VARIABLES

I. UNIFORM RANDOM VARIABLES

1. Suppose one randomly selects a real number between 0 and 12 (e.g., by spinning a hand of a clock). Each number in the interval $(0,12)$ has the same probability p of being selected. But p must be 0: if it were positive, the sum of all probabilities would be infinite (since there are infinitely many numbers in the interval), but the sum must be 1 . In general, the probability that a continuous random variable takes a particular value y is zero: $P(Y=y)=0$ for any y.
2. For a continuous random variable, we are interested in the probability that its value falls in a range (or set) of possible values. In the clock example, what is the probability that the selected number is between 0 and 6? Given the randomness of the selection, $P(0<Y<6)=P(6<Y<12)$ $=0.5=6 / 12$. In general, the probability that Y is in an interval $\left(y_{1}, y_{2}\right)$ is proportional to the length of the interval: $P\left(y_{1}<Y<y_{2}\right)=\left(y_{2}-y_{1}\right) / 12$. It does not matter whether the interval is open or closed: $P\left(y_{1}<Y \leq y_{2}\right)=P\left(y_{1}<Y<y_{2}\right)+P\left(Y=y_{2}\right)=P\left(y_{1}<Y<y_{2}\right)$, since $P\left(Y=y_{2}\right)=0$.
3. The probability that Y is in a set A is the length of A times $1 / 12$; i.e., the area that corresponds to A under the graph of the constant function $1 / 12$; i.e., the integral of that function over A.
4. A random variable Y is uniform (or uniformly distributed) over the interval (a, b) exactly if, for every measurable subset A of (a, b), the probability that Y takes a value in A is the integral of the constant function $1 /(b-a)$ over A. That constant function is the probability density function (abbreviation: $p d f$) of Y. The next step is to consider random variables whose pdf is not constant.

II. BASIC DEFINITIONS

1. The probability density function of a continuous random variable Y is a non-negative function $f(y)$ on all real numbers y such that, for every measurable set A of real numbers, $P(Y \in A)=$ $\int_{A} f(y) d y$. In general, $f(y)$ is not $P(Y=y)$, which is 0 . Since $P(-\infty<Y<+\infty)=1$, the area under the whole graph of the function $f(y)$ must be 1 . This can be so even if $f(y)>1$ for some y. The pdf replaces the pmf (which is undefined: it would be 0 everywhere).
2. A continuous random variable can be equivalently specified by its cumulative distribution function (cdf), namely a function (also defined for discrete random variables) $F(y$) such that, for every real number $y, F(y)=P(Y \leq y)$. So $P(a<Y \leq b)=F(b)-F(a)$. Note that $f(y)=d F(y) / d y$.
3. The expectation of a continuous random variable Y is: $E(Y)=\int_{-\infty}^{+\infty} y f(y) d y$. The variance of Y is, as in the discrete case, $V(Y)=E\left(Y^{2}\right)-\mu^{2}$, with $\mu=E(Y)$. The expectation of a random variable that is uniform over (a, b) is $(a+b) / 2$, and its variance is $(b-a)^{2} / 12$.

III. NORMAL RANDOM VARIABLES

1. A random variable Y is normal (or normally distributed) with parameters μ and σ^{2} exactly if its pdf is: $f(y)=(2 \pi)^{-1 / 2} \sigma^{-1} \exp \left[-(y-\mu)^{2} /\left(2 \sigma^{2}\right)\right]$. It can be shown that $E(X)=\mu$ and $V(X)=\sigma^{2}$. This pdf has a "bell-shaped curve" centered around μ. With probability about $0.68, Y$ is within σ of μ : $P(\mu$ $-\sigma<Y<\mu+\sigma)=0.68$. With probabilities about 0.95 and $0.999, Y$ is within 2σ and 3σ of μ.
2. If Y is normal with parameters μ and σ^{2}, then $\alpha Y+b$ is normal with parameters $a \mu+b$ and $a^{2} \sigma^{2}$. So $Z=(Y-\mu) / \sigma$ is normal with parameters 0 and $1 . Z$ is called the standard normal random variable and is very important because of the Central Limit Theorem: for any sequence Y_{1}, Y_{2}, \ldots of IID random variables with expectation μ and variance σ^{2}, the cdf of Z is the limit, as $n \rightarrow \infty$, of the cdf of $\left(Y_{1}+Y_{2}+\ldots+Y_{n}-n \mu\right) /(\sigma \sqrt{n})$. So $Y_{1}+\ldots+Y_{n}$ "approximates" a normal random variable. E.g., a binomial random variable approximates a normal random variable for large n.

INDUCTIVE LOGIC

I. THREE KINDS OF PROBABILITY

Mathematically, a probability measure is a function that satisfies the probability axioms. But what does it mean to say, e.g., that the probability of rain is 0.7 (given the presence of clouds)?

1. It can mean that the (objective) chance of rain is 0.7 . Chances are supposed to be features of the world, not matters of opinion. They appear in scientific theories (e.g., quantum mechanics, statistical mechanics, genetics). We can infer them from relative frequencies. On a common view, the chance of a proposition can change over time: the chance that it rains at noon is low at 6 am , is high at 10 am , and is 1 at 2 pm , assuming it did rain at noon: if A is a true proposition about the past, its present chance is 1 . The chance of A at time t is denoted by $C h_{t}(A)$.
2. Alternatively, saying that the probability of rain is 0.7 can mean that it is rational (i.e., rationally required) to have degree of belief 0.7 in the proposition that it will rain; equivalently, every rational agent has this degree of belief. The (subjective) credence of agent g at time t in A, denoted by $\operatorname{Cr}_{g t}(A)$, is the degree of belief that g at t has in A. Credences are relative to times (like chances) but are relative to agents and thus subjective (unlike chances). To be rational, an agent must have credences that satisfy the probability axioms and some further constraints.
3. Saying that the probability of rain is 0.7 given the presence of clouds can mean that the inductive probability of the argument from "There are clouds" to "It will rain" is 0.7. Like chances, inductive probabilities are not relative to agents. Unlike chances, inductive probabilities are not relative to times either: whether an argument is (inductively) strong cannot change over time. The inductive probability of A given B is denoted by $\operatorname{In}(A \mid B)$. (Unlike chances and credences, inductive probabilities are primarily conditional, but one can define $\operatorname{In}(A)$ as $\operatorname{In}(A \mid \Omega)$.)

II. RELATIONS BETWEEN THE THREE KINDS OF PROBABILITY

1. Relation between inductive probabilities and rational credences. For any number x in [0, 1], $\operatorname{In}(A \mid B)=x$ exactly if $C r_{g t}(A \mid B)=x$ (for any rational g and any t at which $C r_{g t}(A \mid B)$ is defined): the inductive probability of an argument is the rational credence in the conclusion given the premises of the argument (and given no further information relevant to the conclusion). This leaves it open whether there is an independent standard for evaluating inductive probabilities to which rational agents conform, or whether inductive probabilities are just defined by agreement among rational agents. If $\operatorname{Cr}_{g t}(A \mid B)$ differs among rational agents, then $\operatorname{In}(A \mid B)$ is undefined.
2. Relation between chances and rational credences. Rational agents adjust their credences to (information about) chances: given only that the chance of A at t is 0.5 , the rational credence at t in A is 0.5 . This is a chance-credence principle: $\operatorname{Cr}_{g t}\left(A \mid\left[C h_{t}(A)=x\right]\right)=x$ (for any rational g). Similarly for conditional chances: $\operatorname{Cr}_{g t}\left(A \mid B\left[C_{t}(A \mid B)=x\right]\right)=x$. Rational agents also adjust their credences to frequencies: given only that 90% of past tosses of a coin came up heads, the rational credence in heads at the next toss is 0.9. Information about chances overrides information about frequencies: given only both that 90% of past tosses came up heads and that the present chance of heads at the next toss is 0.5 , the rational credence in heads at the next toss is 0.5 (not 0.9).

III. TRUTH VERSUS PROBABILITY ONE

1. True proposistions need not have probability one: A true but unknown proposition about the future can have both a present chance and a present rational credence less than 1.
2. Probability-one propositions need not be true: If a continuous random variable Y takes the value 0.3 , the false proposition " $Y \neq 0.3$ " had chance 1 (since $C h_{t}(Y=0.3)=0$) and credence 1
(since rational agents adjust their credences to chances). So the argument from $C h_{t}(A)=1$ to A is invalid. But it is maximally strong: its inductive probability is 1 , since $\operatorname{Cr}_{g t}\left(A \mid\left[C h_{t}(A)=1\right]\right)=1$.

IV. ARGUMENTS WITH PROBABILISTIC CONCLUSIONS

1. Arguments with probabilistic conclusions can be valid; e.g., $P(A B)=0.9$ entails $P(A) \geq 0.9$. (Take the probability axioms to be implicit premises.) But do all such arguments have at least one (non-axiomatic) probabilistic premise? One might propose the principle "No Probability In, No Probability Out" (NPINPO): no non-trivial argument with a probabilistic conclusion but no probabilistic premise is valid. (The qualification "non-trivial" is needed to avoid, e.g., arguments with contradictory premises or arguments about the present chances of past events.)
2. Consider the argument from "This card was randomly selected from a standard deck" to "The present chance that this card is red is 0.5 ". Is this a counterexample to NPINPO? No: the argument is invalid. Either a red card was selected, and then the present chance of the card being red is 1 , or a black card was selected, and then the chance is 0 . What about the different argument from "A card will be randomly selected from a standard deck" to "The present chance that a red card will be selected is 0.5 "? This argument is valid but is still no counterexample to NPINPO: to say that the card will be randomly selected is to say that each card has the same chance of being selected, so the premise is probabilistic after all.
3. The argument form "This card was (somehow) selected from a standard deck" to "This card is red" has inductive probability 0.5 . So one might think that the argument from "This card was (somehow) selected from a standard deck" to "The present rational credence in this card being red is 0.5 " is valid (and a counterexample to NPINPO). The latter argument is not valid, however: if it were valid, then adding any premise would preserve validity, but adding the premise "Everyone knows that this card is black" results in a clearly invalid argument.

V. ARGUMENTS WITH PROBABILISTIC PREMISES

1. Probabilistic Modus Ponens. The argument from "If C, then D " and C to D is valid. Analogously, the argument from $C h_{t}(D \mid C)=0.99$ and C to D is strong. It has degree of strength 0.99: by one of the chance-credence principles, $C h_{g t}\left(D \mid C\left[C h_{t}(D \mid C)=0.99\right]\right)=0.99$.
2. Probabilistic Modus Tollens. The argument from "If C, then D " and $\sim D$ to $\sim C$ is valid. But the argument from $C h_{t}(D \mid C)=0.99$ and $\sim D$ to $\sim C$ need not be strong. E.g., the inductive probability of the argument from $\mathrm{Ch}_{t}(\mathrm{Jim}$ is not an American Senator|Jim is an American) $=0.99$ and "Jim is an American Senator" to "Jim is not an American" is zero, not high.
3. The Special Consequence Condition of confirmation. If C entails D and D entails E, then C entails E. But if C confirms D and D entails E, C need not confirm E. For example: "This card is red" confirms "This card is the ace of hearts", and "This card is the ace of hearts" entails "This card is an ace", but "This card is red" does not confirm "This card is an ace".

VI. THE TOTAL EVIDENCE REQUIREMENT

The argument from " 80% of US Senators are men" and " X is a US Senator" to " X is a man" has degree of strength 0.80 . But what about the argument from " 80% of US Senators are men" and "Barbara Boxer is a US Senator" to "Barbara Boxer is a man"? This also has degree of strength 0.80 , although the different argument that one gets by adding the premise "Almost no one named 'Barbara' is a man" is not strong. This shows that a strong argument with premises known to be true may be useless because some further premises known to be true may be relevant to the conclusion. According to the Total Evidence Requirement, the credence of a rational agent in a proposition A is equal to the inductive probability of the argument whose conclusion is A and whose premises constitute the total evidence (relevant to A) that is available to the agent.

ESTIMATING PROPORTIONS

I. POPULATIONS, SAMPLES, AND ESTIMATORS

1. The object of estimation is to find out some parameters of a population (e.g., the proportion of registered Wisconsin voters who plan to vote in the next election) on the basis of data collected from a sample (i.e., a subset of the population; e.g., the respondents in a telephone survey).
2. Suppose the parameter to be estimated is the proportion (i.e., percentage) p of members of the population who have a certain feature (e.g., they plan to vote). Suppose the sample is random (or randomly selected): every member of the population has the same probability ($1 / N$, where N is
 is the sample size) corresponds a Bernoulli random variable Y_{i} taking the value 1 if the member of the sample has the feature (e.g., plans to vote), with probability p, and the value 0 otherwise.
3. An estimator is a random variable that is a function from Y_{1}, \ldots, Y_{n} to possible values of the parameter to be estimated. E.g., a simple estimator is the sample mean $\bar{Y}=\left(Y_{1}+\ldots+Y_{n}\right) / n$.

II. POINT ESTIMATES

1. An estimate (or point estimate) of the parameter to be estimated is the value that an estimator takes for a given sample. E.g., if for a given sample of size $n=3$ we have $y_{1}=1, y_{2}=1, y_{3}=0$, then $\bar{y}=(1+1+0) / 3=0.67$, so the estimate of the proportion (e.g., of those who plan to vote) is 0.67 . (A specific value of \bar{Y} is denoted by \bar{y}.) Different samples can result in different estimates.
2. Not knowing the population parameter, we do not know how good an estimate is. A good estimator is one that in general yields good estimates. An estimator is unbiased if its expected value equals the parameter, and is consistent if it "converges" to the parameter as n increases.

III. INTERVAL ESTIMATES (CONFIDENCE INTERVALS)

1. If the sample is random, then the Bernoulli random variables Y_{i} are independent, so their sum $Y_{1}+\ldots+Y_{n}$ is a binomial random variable, and by the Central Limit Theorem it is approximately normal (with mean $n p$ and variance $n p q$) if n is large (in practice, if $n>20, n p>5$, and $n q>5$; if the sample is without replacement, so the Y_{i} are not independent, the approximation can still be used if $n / N<0.10)$. Then \bar{Y} is normal with mean p and variance $p q / n$. So $P\left(-1.96<\frac{\bar{Y}-p}{\sqrt{p q / n}}<1.96\right)$ $=0.95$. Let the standard error be $S E=\sqrt{\bar{Y}(1-\bar{Y}) / n}$. Then one can show that $P(\bar{Y}-1.96 S E<p$ $<\bar{Y}+1.96 S E)=0.95$. For a value \bar{y} of \bar{Y}, the interval ($\bar{y}-1.96 \mathrm{se}, \bar{y}+1.96 \mathrm{se}$) is called a 95% confidence interval for p. E.g., if $n=3$ and $\bar{y}=0.67$, then $s e=\sqrt{0.67(1-0.67) / 3}=0.27$, so $(0.67-1.96 \cdot 0.27,0.67+1.96 \cdot 0.27)=(0.14,1.20)$ is a 95% confidence interval for p. We can expect 95% of the confidence intervals constructed from many samples of size 3 to contain p.
2. The above confidence interval, $(0.14,1.20)$, is very wide and thus not very informative. One way to get a narrower confidence interval is to decrease the confidence level. In the above example, since $P(-1.645<Z<1.645)=0.90$, a 90% confidence interval for p is $(\bar{y}-1.645 s e, \bar{y}+$ $1.645 \mathrm{se})=(0.23,1.11)$, which is narrower than the 95% confidence interval, namely $(0.14,1.20)$.
3. A better way to get a narrower confidence interval is to increase the sample size. E.g., for the width of a 95% confidence interval to be 0.02 , we need $2 \cdot 1.96$ se ≤ 0.02, so $n \geq \bar{y}(1-\bar{y})$ $(1.96 / 0.01)^{2}$. But $\bar{y}(1-\bar{y}) \leq 0.25$ (since $0 \leq \bar{y} \leq 1$), so it is enough to take $n \geq 0.25(1.96 / 0.01)^{2}=$ 9604. In general, for a $1-\alpha$ confidence interval of width at most d, it is enough to have $n \geq$ $\left(z_{\alpha / 2} / d\right)^{2}$. ($z_{\alpha / 2}$ is the point to the right of which the area under the standard normal pdf is $\alpha / 2$.)

ESTIMATING AND COMPARING MEANS

I. ESTIMATING MEANS

1. Suppose we want to estimate the mean IQ in the population of UW-Madison students. We randomly select a sample of n students. To each member i of the sample ($i=1,2, \ldots, n$) corresponds a random variable Y_{i} whose distribution is the same as the distribution of IQ scores in our population. Call the mean of the distribution μ (this is the parameter to be estimated) and its variance σ^{2}. If n is large (in practice, $n>30$), by the Central Limit Theorem the sample mean $\bar{Y}=\left(Y_{1}+\ldots+Y_{n}\right) / n$ is approximately normal with mean μ and variance σ^{2} / n. So $0.95=$ $P\left(-1.96<\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}<1.96\right)=P\left(\bar{Y}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{Y}+1.96 \frac{\sigma}{\sqrt{n}}\right)$, and a 95% confidence interval for μ is $\left(\bar{y}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{y}+1.96 \frac{\sigma}{\sqrt{n}}\right)$, where \bar{y} is the measured value of \bar{Y}. Estimate σ^{2} by the value s^{2} of the sample variance $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}\right)$ to get $\left(\bar{y}-1.96 \frac{s}{\sqrt{n}}, \bar{y}+1.96 \frac{s}{\sqrt{n}}\right)$ as a 95% confidence interval for μ.
2. For a small sample, use this result: if the population distribution is normal, then the random variable $T=\frac{\bar{Y}-\mu}{S / \sqrt{n}}$ has the t distribution with $n-1$ degrees of freedom. So a $1-\alpha$ small-sample confidence interval for μ is $\left(\bar{y}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \bar{y}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right)$, where $t_{\alpha / 2, n-1}$ is the value (obtained from the table of the t distribution) such that $P\left(-t_{\alpha / 2, n-1}<T<t_{\alpha / 2, n-1}\right)=1-\alpha$. For example, $t_{0.25,9}=2.26$.

II. HYPOTHESIS TESTING

1. Suppose we want to find out whether the mean IQ μ of UW-Madison students differs from the national average of 100 . In other words, we want to test the hypothesis that $\mu=100$ (the null hypothesis, denoted by H_{0}; i.e., the hypothesis that there is no difference, that the difference is "null") against the alternative hypothesis (denoted by H_{1}) that $\mu \neq 100$. A way to perform this test is by computing a 95% confidence interval for μ and checking whether if contains 100 : if it does, the null hypothesis is accepted (and the alternative hypothesis is rejected); if it does not, the alternative hypothesis is accepted (and the null hypothesis is rejected). This amounts to computing the value t of the random variable $T=\frac{\bar{Y}-100}{S / \sqrt{n}}$ (called the test statistic) and seeing whether its absolute value $|t|$ exceeds the critical value $t_{\alpha / 2, n-1}$.
2. Suppose now we want to find out whether the mean IQ μ of UW-Madison students is greater than the national average of 100. In other words, we want to test the null hypothesis H_{0} that $\mu=$ 100 against the one-sided alternative hypothesis H_{2} that $\mu>100$ (because the possibility that $\mu<$ 100 is so remote that we are not interested in it). (By contrast, the previous alternative hypothesis, that $\mu \neq 100$, was two-sided.) Here it will not do to compute a confidence interval for μ, since confidence intervals are symmetric and thus correspond to two-sided alternative hypotheses. But we can still compute the value t of the test statistic $T=\frac{\bar{Y}-100}{S / \sqrt{n}}$ and see whether t (instead of $|t|$) exceeds the critical value $t_{\alpha, n-1}$ (instead of $t_{\alpha / 2, n-1}$). The idea is that, supposing H_{0} is true, it is improbable that t would be so far away from 0 as to exceed the critical value; so if it does exceed it, H_{0} is rejected (otherwise, H_{2} is rejected).
3. This way of testing hypotheses can lead to two errors. A type I error occurs when a true null hypothesis is rejected, and a type II error occurs when a true alternative hypothesis is rejected. (The other two possibilities, namely accepting a true null hypothesis or accepting a true
alternative hypothesis, are not errors. We are assuming that either the null or the alternative hypothesis is true.) The significance level α used to compute the critical value is the probability of a type I error: in the two-sided example, $P_{H_{0}}\left(\right.$ reject $\left.H_{o}\right)=P_{\mu=100}\left(\frac{|\bar{Y}-\mu|}{S / \sqrt{n}}>t_{\alpha / 2, n-1}\right)=\alpha$.
4. A type II error occurs when the sample size is small: even if, e.g., $\mu \neq 100$, for a small sample the confidence internal is wide, so the interval may still include 100 . We say then that the test does not have sufficient power to discriminate the two hypotheses. Formally, if β is the probability of a type II error, namely $P_{H_{1}}$ (reject H_{1}), the power of the test is $1-\beta$, namely $P_{H_{1}}$ (accept H_{1}). To increase power, increase the sample size.

III. COMPARING MEANS

1. Suppose we want to find out whether a new teaching method improves learning. One way to do this is by taking n pairs of identical twins and randomly assigning one twin in each pair to the new teaching method and the other twin to the old method. Then we give everyone a test to measure how much they have learned. Let the scores of those taught by the new method be X_{i} and the scores of those taught by the old method be $Y_{i}(i=1, \ldots, n$; the same i corresponds to the two twins in the same pair). We want to test the null hypothesis $H_{0}: \mu_{X}=\mu_{Y}$ against the alternative hypothesis $H_{1}: \mu_{X}>\mu_{Y}$. Since the two samples (each of size n) are paired rather than independent, in effect we have a single sample of n pairs, so we can consider the differences $D_{i}=$ $X_{i}-Y_{i}$ and test $H_{0}: \mu_{D}=0$ (i.e., $\mu_{X}-\mu_{Y}=0$) against $H_{1}: \mu_{D}>0$ (i.e., $\mu_{X}-\mu_{Y}>0$). If X_{i} and Y_{i} are normal, then so is D_{i}, so we can use the t statistic to perform the test, just as in the one-sample case.
2. Identical twins are hard to come by, however, so an alternative way to find out if the new teaching method improves learning is by taking $n+m$ unrelated people and randomly assigning n of them (the experimental group) to the new teaching method and the remaining m of them (the control group) to the old teaching method. Again, we want to test $H_{0}: \mu_{X}=\mu_{Y}$ against $H_{1}: \mu_{X}>$ μ_{Y}. Here is the crucial result: if X_{i} and Y_{i} are normal and independent, then the random variable $T=\frac{\bar{X}-\bar{Y}-\left(\mu_{X}-\mu_{Y}\right)}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}$ (where $S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}}{n+m-2}$ is the pooled variance) has a t distribution with $n+m-2$ degrees of freedom. (Strictly speaking, the result also assumes that X_{i} and Y_{i} have the same variances. There are statistical tests one can perform to check whether the assumption holds.)
3. For the purpose of finding out whether the new teaching method improved learning in the $n+$ m people participating in the experiment, those people need not have been randomly selected from a large population. And even if they were randomly selected, the immediate purpose of the experiment (and of the statistical test) is to compare the mean scores of the two independent samples, not to make an inference about the mean score of a larger population. In this respect hypothesis testing differs importantly from estimation.

GOODNESS OF FIT

I. NULL HYPOTHESIS: MULTINOMIAL DISTRIBUTION

1. Just as a Bernoulli process consists of repeated IID trials each of which has two possible outcomes, a multinomial process consists of repeated IID trials each of which has many (say k) possible outcomes; e.g., repeatedly throwing a fair die (six possible outcomes at each trial). Just as a binomial distribution corresponds to the numbers of successes and failures in n trials of a Bernoulli process, a multinomial distribution corresponds to the numbers of occurrences of each possible outcome (e.g., each side of the die) in n trials of a multinomial process; e.g., Y_{i} is the number of times side i comes up in n throws (so $Y_{1}+\ldots+Y_{6}=n$). If p_{i} is the probability that side i comes up at any trial, $p_{1}+\ldots+p_{6}=1 . P\left(Y_{1}=y_{1}, \ldots, Y_{k}=y_{k}\right)=\frac{n!}{y_{1}!\ldots y_{k}!} p_{1}^{y_{1}} \ldots p_{k}{ }^{y_{k}}$.
2. Suppose we want to test the null hypothesis that the die is fair, namely that it corresponds to a multinomial distribution with $p_{1}=\ldots=p_{6}=1 / 6$. We use this result: if the distribution of Y_{1}, \ldots,
 approximately a χ^{2} (chi square) distribution with $k-1$ degrees of freedom. (The approximation is good if $n p_{i} \geq 5$ for each i or if $n>5 k$.) If the value of C exceeds the critical value obtained from the table of the χ^{2} distribution for the desired level of confidence, the null hypothesis is rejected.
3. Example: We toss a die 90 times, and we get side $1,2,3,4,5,6$ respectively $16,19,15,14$, 12,14 times. The null hypothesis that the die is fair gives $n p_{1}=\ldots=n p_{6}=90 \cdot 1 / 6=15>5$, so we can apply the χ^{2} test. The value of C is: $\left[(16-15)^{2}+(19-15)^{2}+(15-15)^{2}+(14-15)^{2}+(12-\right.$ $\left.15)^{2}+(14-15)^{2}\right] / 15=28 / 15=1.87$. From the table of the χ^{2} distribution, the critical value for α $=0.05$ and $5(=6-1)$ degrees of freedom is $11.1>1.87$, so the null hypothesis is not rejected.

II. NULL HYPOTHESIS: INDEPENDENCE

1. To test the null hypothesis that men and women are equally likely to smoke (i.e., the variables of sex and smoking are independent), we select a random sample of 100 people.

	Smokers	Non-smokers	Total
Men	16	36	52
Women	11	37	48
Total	27	73	100

Table 1. Observed frequencies.

	Smokers	Non-smokers	Total
Men	0.14	0.38	0.52
Women	0.13	0.35	0.48
Total	0.27	0.73	1.00

Table 2. Expected probabilities under H_{0}.

From Table 1, we estimate the probabilities of being a man as 0.52 and a smoker as 0.27 . If the two variables are independent, then, e.g., the probability of being both a man and a smoker is $0.52 \cdot 0.27=0.14$ (Table 2), so 14 of the 100 people are expected to be both men and smokers.
2. The null hypothesis that the two variables are independent amounts to the hypothesis that the "pair" of variables has a multinomial distribution with four possible outcomes (smoking man, non-smoking man, smoking woman, non-smoking woman) and probabilities given in Table 2. So we can use the χ^{2} test, but we have already "used up" two degrees of freedom to estimate the probabilities of being a man and of being a smoker, so the degrees of freedom to be used in the test are 4-1-2=1. (In general, if the data are arranged in r rows and c columns, the number of degrees of freedom is $(r-1)(c-1)$.) For $\alpha=0.99$, the critical value is 6.63 . The value of the χ^{2} statistic is $\frac{(16-14)^{2}}{14}+\frac{(36-38)^{2}}{38}+\frac{(11-13)^{2}}{13}+\frac{(37-35)^{2}}{35}=0.813<6.63$, so H_{0} is not rejected.
3. The χ^{2} test is to be used only for categorical (not numerical) variables, namely variables whose possible values fall into non-numerical categories (e.g., man vs. woman, heads vs. tails).

BAYESIAN STATISTICAL INFERENCE

I. BAYESIAN CRITICISMS OF CONFIDENCE INTERVALS

1. Suppose one plans to randomly select a sample of size 100 from a normal population with (unknown) mean μ and (known) standard deviation 10. Then $P(\bar{Y}-1.96<\mu<\bar{Y}+1.96)=0.95$, where the probability can be either present chance or present rational credence. Suppose next one selects a sample, gets $\bar{y}=5$, and constructs the confidence interval (3.04, 6.96). Bayesians claim that constructing this interval is pointless, since it is false that $P(3.04<\mu<6.96)=0.95$. This is indeed false if the probability is present chance: the chance is 1 or 0 , depending on whether μ is or not between 3.04 and 6.96 . But why is it false if the probability is present rational credence?
2. Bayesians say it is fallacious to infer $P(3.04<\mu<6.96)=0.95$ from the premises $P(\bar{Y}-1.96<$ $\mu<\bar{Y}+1.96)=0.95$ and $\bar{Y}=5$, just as it is fallacious to infer $P(4$ is odd $)=0.5$ from the premises P (the result of throwing the die is odd) $=0.5$ and "The result of throwing the die is 4 ". Moreover, Bayesians grant that if one randomly selects many samples one can expect about 95% of the confidence intervals one constructs to include μ, but say it is fallacious to infer from this claim about the procedure one uses a probability claim about the confidence interval one constructs.
3. Is it really fallacious, however? Just as the argument from "This card was selected according to a procedure that had a 50% chance of selecting a red card" to "This card is red" has inductive probability 0.5 , the argument from "The confidence interval (3.04, 6.96) was constructed according to a procedure that had a 95% chance of constructing a confidence interval including μ " to "The confidence interval (3.04, 6.96) includes μ " has inductive probability 0.95 . Proponents of confidence intervals typically do not talk about inductive probabilities, but what they typically say may differ from what can be justifiably said about confidence intervals.
4. Bayesians also note that there are multiple ways to construct confidence intervals: one could use various statistics or construct non-symmetric intervals. This observation does not undermine the practice of constructing confidence intervals; it just calls for justifying aspects of the practice.

II. BAYESIAN CRITICISMS OF HYPOTHESIS TESTING

1. What does it mean to accept or reject a hypothesis? Bayesians claim that no answer to this question works. (a) Is to reject a hypothesis to regard it as definitely false? (This interpretation is suggested by the advice of refusing to say that a hypothesis is accepted when it is not rejected, by analogy with the falsificationist advice of refusing to say that a hypothesis is verified when it is not falsified.) No: it is possible to reject a true hypothesis. (b) Is to reject a hypothesis with $\alpha=$ 0.05 to regard it as less than 5% probable? No: such an inference is unwarranted. (c) Is to reject a hypothesis to decide to act as if it were false? No: how one decides to act depends on further factors. (If I reject a hypothesis, I may stop investigating it, but I will not bet my entire fortune that it is false.) However, there is a plausible interpretation that Bayesians typically neglect: (d) To reject a hypothesis is to believe that it is false (i.e., to disbelieve it). This implies neither that one regards it as definitely false, nor that one regards it as less than 5\% probable, nor that one decides to act as if it were false: binary belief is associated with a range of degrees of belief.
2. Isn't the null hypothesis always false (so that testing is redundant)? "Are the effects of A and B different? They are always different-for some decimal place." But some null hypotheses are true: it often happens that the mean teaching evaluations for two courses taught a given term at a given department are exactly the same. Moreover, the objection does not establish that any empirical null hypothesis is a priori false: no matter how unlikely, it is still possible that the effects of A and B are not different-for any decimal place. Maybe, more charitably, the
objection is that H_{0} is always very unlikely, so one should instead focus on hypotheses like " μ is approximately 3 ". But if data on the basis of which $\mu=3$ is rejected provide evidence against $\mu=$ 3 , they also provide evidence against " μ is approximately 3 ".
3. Wouldn't the null hypothesis always be rejected with a large enough sample? This objection relies on the claim that, if e.g. the null hypothesis is $H_{0}: \mu=3$, then even if \bar{y} is 3.001 (i.e., very close to 3), there is always a large enough sample size n such that $(3.001-3) /(s / \sqrt{n})>1.96$, so H_{0} will be rejected. But it is fallacious to infer from this claim that every null hypothesis will be rejected if n is large enough: the claim takes \bar{y} as fixed and increases n, but as n increases \bar{y} may get closer to μ. E.g., Pearson tossed a coin 24,000 times and got 12,012 heads (50.05\%), failing to reject the null hypothesis that the coin was fair. The reply that he would had rejected the null hypothesis if he had tossed the coin 24,000,000 times and obtained 50.05% heads misses the point: maybe he would have gotten $12,000,010$ heads (50.00004%). No matter how large the sample will be, we do not know a priori that any null hypothesis will be rejected.
4. Aren't some rejected null hypotheses very probably true? Suppose we know that a population percentage p is either 0.4 or 0.6 and we get $\bar{y}=0.401$ but the sample is so large that $H_{0}: p=0.4$ is rejected. This seems wrong: the value of 0.401 makes it very probable that p is 0.4 (given that p is either 0.4 or 0.6). Moreover, if one had designated $p=0.6$ as the null hypothesis, the very same data (i.e., $\bar{y}=0.401$) would have led one to reject $p=0.6$ (instead of rejecting $p=0.4$). These criticisms, however, work only against the (practically nonexistent) cases in which H_{0} and H_{1} are simple, not against the (standard) cases in which H_{1} is composite (e.g., $\mu>3$ or $\mu \neq 3$).
5. Isn't the logic of null hypothesis testing fallacious? Let D (for "data") be the proposition that an extreme (i.e., higher than the critical value) value of the test statistic (e.g., the sample mean) was obtained. The argument behind null hypothesis testing, namely the argument from $P\left(D \mid H_{0}\right)$ $=0.05$ (i.e., $P\left(\sim D \mid H_{0}\right)=0.95$) and D to $\sim H_{0}$ is an instance of probabilistic modus tollens, which is not always inductively strong. It is true that the argument from $P\left(H_{0} \mid D\right)=0.05$ and D to $\sim H_{0}$ is always strong (it has inductive probability 0.95 , by probabilistic modus ponens), but it is fallacious to infer $P\left(H_{0} \mid D\right)=0.05$ from $P\left(D \mid H_{0}\right)=0.05$. Classical statisticians grant this but reply that in practice $P\left(H_{0} \mid D\right)$ and $P\left(D \mid H_{0}\right)$ are highly correlated, so that it is unfair to focus on contrived cases in which they are very different. Compare: using Newtonian mechanics is justified for speeds low relative to the speed of light, where it gives good approximations.

III. A BAYESIAN ALTERNATIVE TO CLASSICAL STATISTICS

1. Bayesian statistical inference starts with the assignment of prior probabilities to hypotheses (which classical statisticians avoid). These prior probabilities are credences; usually they are not rationally required, but they must be rationally permitted (e.g., they must satisfy the probability axioms). Typically many assignments of prior probabilities are rationally permitted, and the arbitrariness of any such assignment is a standard objection to Bayesianism. Bayesians reply that typically it does not matter what prior probabilities one starts with: as evidence accumulates, people who start with different prior probabilities end up with similar posterior probabilities.
2. The main component of Bayesian statistical inference is the application of Bayes' theorem to compute the posterior probability of a hypothesis H given the evidence E. But to compute the posterior probability $P(H \mid E)$, one needs not only $P(E \mid H)$ and the prior probability $P(H)$, but also $P\left(E \mid H^{C}\right)$. Sometimes $P\left(E \mid H^{C}\right)$ is available (e.g., P (test positive|patient does not have AIDS)), but often it is unavailable (e.g., P (deflection of sunlight|General Theory of Relativity is false).
3. Another worry is that Bayesian statistical inference seems to make no difference in practice. Bayesians talk of "credible intervals" instead of "confidence intervals" and of posterior probabilities instead of accepting or rejecting hypotheses, but they still (dis)believe certain hypotheses; must these hypotheses be different from those that classical statisticians (dis)believe?

DECISION THEORY

I. DECISION PROBLEMS

1. Informally, a decision problem is an agent's problem of choosing among alternative courses of action at a given time. For example, the problem of choosing (i.e., deciding) whether to satisfy a friend's request to lend her $\$ 1,000$.
2. Formally, a decision problem has three components. (1) A set of possible actions (e.g., lend the money vs. not lend the money). (2) A set of possible states of the world on which the consequences of the agent's possible actions depend (e.g., the friend returns the money vs. does not return the money if you lend it). (3) A set of outcomes associated with each combination of an action and a state (e.g., losing \$1,000 if you lend the money but the friend does not return it).
3. It is convenient to take actions, states, and outcomes to be propositions (e.g., the proposition that you lend the money). The actions must be mutually exclusive and collectively exhaustive, and so must be the states. The outcomes must include all relevant consequences of the actions.

II. EXPECTED UTILITY MAXIMIZATION

1. The expected utility of an action A, denoted by $\mathrm{EU}(\mathrm{A})$, is the sum, over all states, of the product of the probabilities (rational credences) of the states with the values (or utilities) of the outcomes. Utilities are often understood as monetary values. For example, suppose you are offered to pay $\$ 1,000$ for the following gamble: a fair coin will be tossed 5 times, and you will get nothing if the coin comes up heads all 5 times (with probability $0.5^{5}=0.03125$), but you will get $\$ 10,000$ otherwise (with probability $1-0.5^{5}=0.96875$). The expected utility of refusing to play is 0 , and the expected utility of playing is $0.03125 \cdot(-\$ 1,000)+0.96875 \cdot \$ 9,000=\$ 8,678.5$.
2. According to the principle of expected utility maximization (EUM), an agent is rationally required to choose an action that maximizes (i.e., has highest) expected utility. So it seems that, according to EUM, in the above example you should pay and play.
3. Things are not so simple, however. $\$ 1,000$ may be a lot of money for you, so it need not be irrational to balk at the small chance (around 3\%) that you will lose it. Moreover, the St. Petersburg game (which gives you $\$ 2^{n}$ if a coin first comes up heads at the nth toss and 0 otherwise) has infinite expected utility, but it need not be irrational to refuse to pay even $\$ 100$ to play, even if $\$ 100$ is not a lot of money for you. Also, suppose you are offered a bet that gives you $\$ 1,000,000,000,000$ with probability 0.001 but requires you to pay $\$ 1,000,000$ with probability 0.999 ; it seems clearly irrational to accept the bet, although its expected utility is $\$ 999,001,000$. Finally, in many cases non-monetary values are relevant (e.g., the value of helping your friend by lending her the money); how are utilities defined in such cases?

III. CLASICAL EXPECTED UTILITY THEORY

1. To answer these objections, here is a theoretical justification for EUM: it can be shown that, if your preferences among propositions satisfy certain rationality constraints, then there is a unique probability measure on states and a utility function (unique up to the arbitrary choice of a unit and a zero point) on outcomes such that you prefer action A to A^{\prime} exactly if $\mathrm{EU}(A)>\mathrm{EU}(A)$, and you are indifferent among A and A^{\prime} exactly if $\mathrm{EU}(A)=\mathrm{EU}\left(A^{\prime}\right)$. This result is a representation theorem: your preferences can be represented by an expected utility function. If you are rational, you always choose as if you were maximizing expected utility.
2. So the usual introductory presentations of EUM are misleading. EUM is not a decision procedure, a way of finding out which action to choose: EUM does not require an agent to
consciously assign probabilities to states and utilities to outcomes and compute the expected utilities of actions with the goal of maximizing expected utility. Instead, EUM requires that an agent's preferences be compatible with the existence of a probability and a utility function such that the corresponding expected utility function represents those preferences. More specifically, EUM requires that an agent's preferences over actions satisfy the rationality constraints specified in a representation theorem. This does not mean that expected utility calculations are useless: often they roughly correspond to the expected utilities that represent one's preferences.

IV. THE ALLAIS PARADOX

1. An integer from 1 to 100 will be randomly selected. You are given a choice between C and D: C: You get $\$ 500,000$ if the integer is from 90 to 100 (prob. 0.11), otherwise you get nothing (prob. 0.89).
D: You get $\$ 2,500,000$ if the integer is from 91 to 100 (prob. 0.10), otherwise you get nothing (prob. 0.90).
2. Now you are given a choice between F and G:

F: You get a gift of \$500,000 (no strings attached, prob. 1).
G: You get $\$ 2,500,000$ if the integer is from 91 to 100 (prob. 0.10), you get $\$ 500,000$ if the integer is from 1 to 89 (prob. 0.89), and you get nothing if the integer is 90 (prob. 0.01).
3. Most people prefer D to C and F to G, but the expected monetary values are $\$ 55,000$ for G, $\$ 250,000$ for $\mathrm{D}, \$ 500,00$ for F , and $\$ 695,000$ for G . One can appeal to the following rationality constraint to argue that these preferences are irrational: if a rational agent's conditional preferences between A and A^{\prime} and between B and B^{\prime} given any state are the same, then the agent's unconditional preferences between A and A^{\prime} and between B and B^{\prime} are also the same.

Selected integer	$1-89$	90	$91-100$
Option C	0	$\$ 500,000$	$\$ 500,000$
Option D	0	0	$\$ 2,500,000$
Option F	$\$ 500,000$	$\$ 500,000$	$\$ 500,000$
Option G	$\$ 500,000$	0	$\$ 2,500,000$

V. EVIDENTIAL EXPECTED UTILITY THEORY

1. Another rationality constraint is the dominance principle (or sure-thing principle): if a rational agent prefers A over A^{\prime} conditionally on some states and does not prefer A^{\prime} over A conditionally on any state, then the agent unconditionally prefers A over A^{\prime}. E.g., assuming option X gives you $\$ 10$ if the coin comes up heads and nothing otherwise but option Y gives you $\$ 100$ if the coin comes up heads and nothing otherwise, you should prefer Y to X.
2. Objection: Should you spend the night partying or studying for tomorrow's exam? Conditionally on passing the exam, you prefer partying to studying. Conditionally on failing, you prefer partying to studying. According to the dominance principle, then, you should prefer partying to studying. But this reasoning ignores the fact that you are much more likely to pass if you study than if you party. The standard reply is that the dominance principle does not apply in such cases: classical expected utility theory assumes that the probabilities of the states do not depend on the agent's actions. But then classical expected utility theory is seriously incomplete.
3. To avoid this problem, maximize not expected utility, defined as $\mathrm{EU}(A)=\Sigma_{s} P(S) u(O[A, S])$ (where $O[A, S]$ is the outcome of action A under state S), but rather evidential expected utility, defined as $\operatorname{EEU}(A)=\Sigma_{s} P(S \mid A) u(O[A, S])$. A representation theorem can be proven.

VI. NEWCOMB'S PARADOX

1. A statement of the paradox by Joyce:

Suppose there is a brilliant (and very rich) psychologist who knows you so well that he can predict your choices with a high degree of accuracy. One Monday as you are on the way to the bank he stops you, holds out a thousand dollar bill, and says: "You may take this if you like, but I must warn you that there is a catch. This past Friday I made a prediction about what your decision would be. I deposited $\$ 1,000,000$ into your

Abstract

bank account on that day if I thought you would refuse my offer, but I deposited nothing if I thought you would accept. The money is already either in the bank or not, and nothing you now do can change this fact. Do you want the extra $\$ 1,000$?" You have seen the psychologist carry out this experiment on two hundred people, one hundred of whom took the cash and one hundred of whom did not, and he correctly forecast all but one choice. There is no magic in this. He does not, for instance, have a crystal ball that allows him to "foresee" what you choose. All his predictions were made solely on the basis of knowledge of facts about the history of the world up to Friday. He may know that you have a gene that predetermines your choice ...

2. Given that whether you take the $\$ 1,000$ has no causal effect on what amount is already in your bank account, it seems irrational to refuse the $\$ 1,000$. But here is a standard objection (Sugden): Imagine two people, irrational Irene and rational Rachel, who go through the experiment. Irene [refuses the money] and wins $\$ 1$ million. Rachel [takes the money] and wins $\$ 1,000$. Rachel then asks Irene why she didn't [take the extra thousand]; surely Irene can see that she has just thrown away $\$ 1,000$. Irene has an obvious reply: "If you're so smart why ain't you rich?" This reply deserves to be taken seriously. ... The relevant difference between Irene and Rachel is that they reason in different ways. As a result of this difference, Irene finishes up with $\$ 1$ million and Rachel with $\$ 1,000$. Irene’s mode of reasoning has been more successful ... So, are we entitled to conclude that, nevertheless, it is Rachel who is rational?
3. Irene's reply changes the subject. Rachel could reply: "My question was why you didn't take the money. I know why I am not rich: because I am not the kind of person the psychologist thinks will refuse the money. Given that I know I am the type who takes the money, the $\$ 1,000$ was the most I was going to get, so the reasonable thing for me to do was to take it." Irene might respond: "But don't you wish you were like me, Rachel?" Rachel can grant that she wishes she were like Irene (i.e., the type who refuses the money), but this is not to endorse Irene's reasoning.

VII. CAUSAL DECISION THEORY

1. Evidential decision theory gives the wrong result in Newcomb's decision problem (i.e., that one should refuse the money): EEU(Refuse) $=P$ (Predicted refusal|Refuse) $\$ 1,000,000+$ P (Predicted acceptance \mid Refuse $) \cdot 0=\$ 1,000,000>\mathrm{EEU}$ (Accept) $=P$ (Predicted refusal|Accept). $\$ 1,001,000+P$ (Predicted acceptance \mid Accept $) \cdot \$ 1,000=\$ 1,000$.
2. To avoid this problem, maximize not evidential expected utility, but rather causal expected utility, defined as $\mathrm{CEU}(A)=\Sigma_{s} P^{*}(S \mid A) u(O[A, S])$, where $P^{*}(\bullet \mid A)$ is a probability measure reflecting your judgments about your ability to causally influence events by doing $A . P^{*}(S \mid A)$ is high either when you think that A will cause S or when you think that S is likely to hold whether or not A does. On a common proposal, $P^{*}(S \mid A)=P$ (If I were to do A, S would hold).
3. Causal decision theory gives the right result in Newcomb's decision problem (i.e., one should accept the money): CEU(Refuse) $=P^{*}$ (Predicted refusal|Refuse):\$1,000,000 $+P^{*}$ (Predicted acceptance \mid Refuse $) \cdot 0=\$ 1,000,000=p \cdot \$ 1,000,000<\mathrm{CEU}($ Accept $)=P *$ (Predicted refusal Accept $)$ \$1,001,000 $+P^{*}$ (Predicted acceptance|Accept) $\$ 1,000=p \cdot \$ 1,001,000+(1-p) \cdot \$ 1,000$.

VIII. SIMPSON'S PARADOX

1. Here are success rates and numbers of cured/treated cases for two treatments of kidney stones.

Kind of stones	Treatment A	Treatment B
Small stones	$93 \%(=81 / 87)$	$87 \%(=234 / 270)$
Large stones	$73 \%(=192 / 263)$	$69 \%(=55 / 80)$
Both	$78 \%(=273 / 350)$	$83 \%(=289 / 350)$

Treatment A seems more effective than B on small stones, and also on large stones, but overall B seems more effective than A. Explanation: Doctors tend to give the severe cases (large stones) the better treatment (A), and the milder cases (small stones) the inferior treatment (B).
2. To choose a treatment, should one consult the aggregated or the partitioned data? If one does not know the size of the stone, should one administer treatment B? According to causal decision theory, one should look at the causal story: the conditional probabilities are not enough.

CAUSAL REASONING

I. NECESSARY AND SUFFICIENT CONDITIONS

1. Watering plants causes them to grow in the sense that watering is necessary (i.e., required) for growth: in the absence of watering, no growth occurs. But watering is not sufficient (i.e., not enough) for growth: sunlight is also necessary.
2. Decapitation causes death in the sense that decapitation is sufficient for death: whenever decapitation occurs, death occurs. But decapitation is not necessary for death: death can occur without decapitation (e.g., drowning is also sufficient).
3. The action of a force causes a body to accelerate in the sense that the action of a force is both necessary and sufficient for acceleration: whenever a force acts, acceleration occurs, and whenever no force acts, no acceleration occurs.
4. What counts as necessary or sufficient may vary with the circumstances: heating water to $100^{\circ} \mathrm{C}$ is in normal circumstances both necessary and sufficient for boiling the water, but is not necessary if one is at high altitude, and is not sufficient if the water contains impurities.
5. To prevent a phenomenon, look for a necessary condition: to eradicate yellow fever, exterminate the anopheles mosquito, since the mosquito causes (i.e., is necessary for) the spread of the disease. To produce a phenomenon, look for a sufficient condition: to increase muscular strength, exercise regularly, since exercise causes (i.e., is sufficient for) increasing strength.

II. PROBABILISTIC CAUSATION AND CAUSAL NETWORKS

1. Smoking causes lung cancer in the sense that smoking increases the probability of getting lung cancer. Smoking is not necessary for lung cancer: one can get lung cancer even if one never smokes. Smoking is not sufficient for lung cancer: not everyone who smokes gets lung cancer.
2. Suppose Smith shoots Jones because Jones slept with Smith’s spouse; Jones is taken to surgery and suffocates after an allergic reaction to an anesthetic. The coroner may be interested in the proximate cause of death, namely suffocation. The prosecutor may be interested in the salient cause of death, namely the shooting. The psychiatrist may be interested in a remote cause of death, namely Smith's miserable childhood. All these causes are parts of a causal network.
3. Singular causation is causation of a single event (e.g., Caesar's death). General causation is causation of a class of events (e.g., deaths by lung cancer). Assuming that nature is uniform, singular and general causation are related: if an event C caused an event E, there must be a causal law to the effect that, in similar circumstances, events like C cause events like E.

III. MILL'S METHODS OF AGREEMENT AND DIFFERENCE

1. The positive method of agreement (eliminating features as not necessary): If only one among the features under consideration is present in all observed positive instances of a phenomenon, then only that feature can be necessary for the phenomenon. (The remaining features cannot be necessary, since each of them is absent in at least one positive instance of the phenomenon.)
2. Example: Here are the foods eaten by three people who got sick (+: eaten; - : not eaten).

Observed instance	Feature A: Spaghetti	Feature B: Steak	Feature C: Ice cream	Feature D: Orange juice	Phenomenon: Sickness
Alice	+	+	-	-	+
Bob	+	+	-	+	+
Charlie	-	+	+	+	+

Only the steak was eaten by everyone who got sick, so only the steak can be necessary for sickness. The ice cream cannot be necessary, since it was not eaten by Bob, who got sick. Similarly, the remaining foods can be eliminated as not necessary.
3. Limitations of the method. (a) Maybe none of the features under consideration is necessary: maybe the sickness was caused not by the steak, but by the use of dirty forks, a feature not in the list. (b). Maybe there is no single common cause of all observed positive instances: maybe Alice's and Bob's sickness was caused by the spaghetti, but Charlie's was caused by the ice cream. (c) Maybe the identified single common feature is not present in other, unobserved positive instances: maybe Derek did not eat the steak but also got sick. (d) It is very hard to find a unique common feature if the list of features is reasonably comprehensive: in addition to having all eaten steak, Alice, Bob, and Charlie also all used forks, drank water, etc.
4. The negative method of agreement (eliminating features as not sufficient): If only one among the features under consideration is absent in all observed negative instances of a phenomenon, then only that feature can be sufficient for the phenomenon. (The remaining features cannot be sufficient, since each of them is present in at least one negative instance of the phenomenon.) Example: Given the table below, only feature D can be sufficient for the phenomenon.

Instance	Feature A	Feature B	Feature C	Feature D	Phenomenon
1	+	+	-	-	-
2	+	-	+	-	-

5. The double method of agreement (eliminating features as not both necessary and sufficient): If only one among the features under consideration is both present in all observed positive instances and absent in all observed negative instances of a phenomenon, then only that feature can be both necessary and sufficient for the phenomenon. Example: Given the table below, only feature B can be both necessary and sufficient for the phenomenon.

Instance	Feature A	Feature B	Feature C	Feature D	Phenomenon
1	+	+	-	-	+
2	+	-	+	-	-

6. The method of difference is a special case of the double method of agreement in which all feature columns except one consist only of + or only of - . This method is used in controlled experiments. Example: Given the table below, only C can be both necessary and sufficient.

Instance	Feature A	Feature B	Feature C	Feature D	Phenomenon
1	+	-	+	+	+
2	+	-	-	+	-
3	+	-	-	+	-

7. To summarize, all four methods try to find a single feature column that has exactly the same pattern of + and - as the phenomenon column, but (a) the positive method of agreement considers only phenomenon columns with all + , (b) the negative method of agreement considers only phenomenon columns with all -, and (c) the double method of agreement and the method of difference consider only phenomenon columns with both + and -.
8. A complication: complex features. Maybe only the disjunction (or the conjunction, etc.) of two or more simpler features is necessary (or sufficient, or both) for a phenomenon. This can be accounted for by expanding the list of features so as to include logical combinations of simpler features. Example: Given the table, neither A nor B can be necessary, but their disjunction can.

Observed instance	Feature A: Studying hard	Feature B: Being very smart	Feature A \cup B: Studying hard or being very smart	Phenomenon: Succeeding
Alice	-	+	+	+
Bob	+	-	+	+

IV. THE METHOD OF CORRELATION (CONCOMITANT VARIATION)

1. The methods of agreement and difference assume that features and phenomena are either present or absent. But often they come in degrees: studying hard, being smart, and having successes can be present to a greater or lesser extent. If an increase or decrease in one variable is accompanied by an increase or decrease in another (e.g., studying more or less hard is accompanied by having more or fewer successes), there is a correlation between the two variables, and this indicates (but does not guarantee) a causal connection.
2. The correlation coefficient of two random variables X and Y is: $\rho(X, Y)=\frac{E(X Y)-E(X) E(Y)}{\sigma_{X} \sigma_{Y}}$. It can be shown that ρ is between -1 and 1. If $\rho>0, X$ and Y are positively correlated: as X increases, Y increases, and as X decreases, Y decreases. If $\rho<0, X$ and Y are negatively correlated: as X increases, Y decreases, and as X decreases, Y increases. If $\rho=-1$ or $\rho=1$, there is a perfect linear relation between X and Y : with probability $1, Y=a X+b$. If X and Y are independent, then $\rho=0$. But if $\rho=0, X$ and Y need not be independent: Y may be a nonlinear function of X (e.g., $Y=X^{2}$).
3. Correlation is symmetric, but causation is not. If X is correlated with Y, does X cause Y or does Y cause X ? To answer this question, look at changes over time: if increases or decreases in X are followed by increases or decreases in Y, this suggests that X causes Y, since causes come before their effects. But there is no guarantee that X causes Y : the correlation may be coincidental. Or the correlation may be due to a common cause of X and Y. E.g., the correlation between falling barometers and stormy weather is due to a common cause: a sharp drop in atmospheric pressure.
4. Longitudinal (or diachronic) studies that find correlations between changes in values of variables over a time period usually provide stronger evidence for causation than cross-sectional (or synchronic) studies that find correlations between values of variables at a particular time. Experimental studies (especially randomized ones), in which an intervention is made (e.g., a drug is given), usually provide stronger evidence for causation than observational studies.

ANALOGICAL REASONING

I. REPRESENTING ANALOGICAL ARGUMENTS

1. Analogical reasoning is used all the time: judges decide how to apply the law by making analogies with how the law was applied in the past, scientists formulate hypotheses about the effects of chemicals on humans by analogy with their effects on animals, and so on.
2. An analogical argument has the following form:
(1) Source is similar to Target in certain respects.
(2) Source has some further feature Q.

So: (3) Target also has Q or some feature Q^{*} similar to Q.
3. Tabular representation of an analogical argument:

Domains:	Earth (Source)	Mars (Target)
Known similarities:	Has a moon (P)	Has moons $\left(P^{*}\right)$
Known dissimilarities:	Has surface water (A)	Has little surface water $\left(\sim A^{*}\right)$
Inferred similarity:	Supports life (Q)	Supports microbial life $\left(Q^{*}\right)$

4. The horizontal relations are the relations between Source and Target: the relations of similarity between P and P^{*}, and the relations of dissimilarity between A and $\sim A^{*}$. The vertical relations are the relations between features of Source: the prior association between P and Q.

II. CLASSIFYING ANALOGICAL ARGUMENTS

The classification is based on the nature (inductive vs. deductive) and on the direction (from P to Q, from Q to P, both, or neither) of the prior association between P and Q.

Nature of association	Direction of association			
	Predictive (from P to Q)	Explanatory (from Q to P)	Functional (both directions)	Correlative (no direction)
Deductive	Mathematical	Abductive	-	-
Inductive	Predictive/Probabilistic	Abductive/Probabilistic	Functional	Correlative

One gets then six types of analogical arguments:

1. Mathematical: The three medians of any triangle have a common intersection. By analogy, the four medians of any tetrahedron have a common intersection.
2. Predictive/Probabilistic: Microbes have been found to thrive in frozen lakes in Antarctica and glaciers in Greenland. By analogy, there may be microbial life on Mars.
3. Abductive: The absence of force inside a hollow spherical shell is a consequence of, and thus can be explained by, the fact that the gravitational force between masses follows an inverse square law. By analogy, the absence of electrical influence inside a hollow charged spherical shell suggests that charges attract and repel each other with an inverse square force.
4. Abductive/Probabilistic: The predominance of useful traits among domesticated animals is explained by artificial selection (i.e., breeding). By analogy, the predominance of useful traits among animals in the wild is explained by natural selection.
5. Functional (inferring similarities in function from similarities in form): In addition to bowlshaped lamps, carved from rock, inside which animal fat is burned, Inuit groups occasionally use flat, uncarved slabs that allow fuel to spill over the sides as makeshift lamps when traveling and pressed for time. By analogy, flat slabs bearing traces of burned fat found by archaeologists in Southern Europe had the same function during the Ice Age.
6. Correlative: Morphine is an effective painkiller and induces an S-shaped tail curvature in mice. By analogy, the observation (in 1934) that meperidine (know also known as Demerol) induced an S-shaped tail curvature in mice suggested that meperidine has painkilling properties.

III. EVALUATING ANALOGICAL ARGUMENTS

1. Commonsense guidelines.

- The more similarities (between Source and Target), the stronger the analogy. The more differences, the weaker the analogy.
- Analogies involving casual relations are more plausible than those not involving causal relations, and structural analogies are stronger than those based on superficial similarities.
- The relevance of the similarities and differences to the conclusion must be taken into account.
- The weaker the conclusion, the more plausible the analogy.

These guidelines are of limited use. How to count similarities? How to determine relevance?
2. A three-step procedure to evaluate analogical arguments.

Preliminary step: Represent the argument in tabular form (identify P, P^{*}, Q, Q^{*}).
First step: Formulate explicitly the prior association between P and Q and evaluate it. Is it valid (if deductive), is it strong (if inductive), is it a good explanation (if abductive), is there a high or at least a statistically significant correlation (if correlative)? If the prior association fails to satisfy these standards, then the analogical argument cannot be strong.
Second step: Determine which features are relevant to the evaluation of the argument, in the sense of playing an essential role in the prior association between P and Q. If the association is deductive, which premises are indispensable and which ones are redundant? If the association is predictive, which causal factors are important?
Third step: Assess the potential for generalizing the prior association. Do the essential features identified in the second step have analogues in Target that are known to hold, or at least not known not to hold? Are there reasons to believe that generalization might be blocked?

Source: P. Bartha, By parallel reasoning: The construction and evaluation of analogical arguments (Oxford University Press, 2010).

