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IMPORTANT FORMULAS 

 

I. PROBABILITY 
 

Number of combinations of k out of n objects: �𝑛𝑘� =  𝑛!
𝑘! (𝑛−𝑘)!

 , where n! =1⋅2⋅3⋅…⋅n. (0! = 1.) 

Probability of disjunction: P(A ∪ B) = P(A) + P(B) - P(AB). Odds for A: P(A)/P(Ac). 
Conditional probability of A given B: P(A|B) = P(AB)/P(B) if P(B) > 0. So P(AB) = P(A|B)P(B). 
Theorem of total probability: P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). 
Bayes’ theorem: 𝑃(𝐴|𝐵) =  𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)  =  𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|𝐴𝑐)𝑃(𝐴𝑐)

 . 
Independence of A and B: P(AB) = P(A)P(B); equivalently (if P(B) > 0), P(A|B) = P(A). 
Variance of a random variable Y with expectation μ: V(Y) = E(Y2) - μ2 = E((Y - μ)2). 
Expectation (i.e., mean) of a discrete random variable Y: E(Y) = y1P(Y = y1) + y2P(Y = y2) + …. 
E(Y1 + Y2) = E(Y1) + E(Y2). V(aY) = a2V(Y). If Y1 and Y2 independent, V(Y1 + Y2) = V(Y1) + V(Y2). 
Bernoulli random variable (success/failure): E(Y) = p, V(Y) = pq, where q = 1 - p. 
Binomial random variable (successes in n trials): P(Y = k) = �𝑛𝑘�𝑝

𝑘𝑞𝑛−𝑘, E(Y) = np, V(Y) = npq. 
Geometric random variable (trials until first success): P(Y = n) = qn-1p, E(Y) = 1/p, V(Y) = q/p2. 
If Y is normal with parameters μ and σ2, the standard normal Z = (Y - μ)/σ has parameters 0 and 1. 
Central Limit Theorem: For any sequence Y1, Y2, ... of IID random variables with expectation μ 
and variance σ2, the cdf of Z is the limit, as n → ∞, of the cdf of (Y1 + Y2 + … + Yn - nμ)/(σ√𝑛). 
 

II. STATISTICS 
 

Sample: n IID random variables Y1, …, Yn with E(Yi) = μ (population mean) and V(Yi) = σ2 
(population variance). Sample mean: 𝑌� = (Y1 + … + Yn)/n. E(𝑌�) = μ, V(𝑌�) = σ2/n. Sample 
variance: S2 = 1

𝑛−1
∑ (𝑌𝑖 − 𝑌�)2𝑛
𝑖=1  = 1

𝑛−1
(∑ 𝑌𝑖2 − 𝑛𝑌�2)𝑛

𝑖=1 . Measured values of 𝑌� and S: 𝑦� and s. 
Large sample 1 - α confidence interval for a proportion: (𝑦� - zα/2⋅se, 𝑦� + zα/2⋅se), where se = 
�𝑦�(1 − 𝑦�)/𝑛 and zα/2 is the point to the right of which the area under the standard normal pdf is 
α/2. For a 1 - α confidence interval of width ≤ d, it is enough to have n ≥ (zα/2/d)2[4p(1 - p)]. 
Large sample 1 - α confidence interval for a mean: (𝑦� - zα/2

𝑠
√𝑛

 , 𝑦� + zα/2
𝑠
√𝑛

); use σ (not s) if known. 

Small sample 1 - α confidence interval for a mean: (𝑦� - 𝑡α/2,𝑛−1
𝑠
√𝑛

 , 𝑦� + 𝑡α/2,𝑛−1
𝑠
√𝑛

), where 
𝑡α/2,𝑛−1 is the point to the right of which the area under the pdf of the t distribution with n - 1 
degrees of freedom is α/2. (All t-based tests assume that the population distribution is normal.) 
Significance level α for hypothesis testing: Probability of type I error (rejecting true H0). 
Hypothesis testing for a mean: To test H0: μ = μ0, compute t = 𝑦

�−µ0
𝑠/√𝑛

  and see if |t| > 𝑡α/2,𝑛−1 for a 

two-sided H1 (i.e., μ ≠ μ0), or compare t to 𝑡α,𝑛−1 for a one-sided H1 (e.g., μ > μ0). 
Comparison of two independent means: To test H0: μX = μY, compute t = 𝑥̅ − 𝑦�

𝑠𝑝�
1
𝑛 + 1𝑚

 (pooled 

variance: 𝑠𝑝2 = (𝑛 − 1)𝑠𝑋
2  + (𝑚 − 1)𝑠𝑌

2

𝑛+ 𝑚 − 2
= ∑ (𝑥𝑖 − 𝑥̅)2 + ∑ (𝑦𝑖 − 𝑦�)2𝑚

𝑖 = 1
𝑛
𝑖 = 1

𝑛 + 𝑚 − 2
 ) and see if |t| > 𝑡α/2,𝑛−1 for a two-

sided H1 (i.e., μX ≠ μY), or compare t to 𝑡α,𝑛+𝑚−2 for a one-sided H1 (e.g., μX > μY). 
Goodness of fit test: To test H0: the distribution of Y1, …, Yk is multinomial with parameters n, 
p1, …, pk, compute c = ∑ (𝑦𝑖 − 𝑛𝑝𝑖)2

𝑛𝑝𝑖
𝑘
𝑖= 1  and see if c > χ𝑘−1

2  (check that all npi ≥ 5 or n > 5k). 
Testing for independence of X and Y: If the data for X and Y are arranged in r rows and c 
columns, use the χ2 test with (r - 1)(c - 1) degrees of freedom. 
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INTRODUCTION TO LOGIC 

 

I. LOGIC, ARGUMENTS, AND PROPOSITIONS 
 

1. The main object of logic is to evaluate arguments: to find out which arguments are good (or 
bad), and how good (or how bad) they are. 
 

2. An argument is an ordered pair whose first member is a set of propositions (the premises of 
the argument) and whose second member is a proposition (the conclusion of the argument). 
 

3. A proposition is something that can be non-derivatively true or false, and is typically 
expressed by a declarative sentence. Different sentences can express the same proposition (e.g., 
“Alice is taller than Bob” and “Bob is shorter than Alice”). 
 

II. RELATIONS BETWEEN PREMISES AND CONCLUSIONS 
 

1. An argument is (deductively) valid exactly if it is necessary that its conclusion is true if its 
premises are true (i.e., its premises guarantee its conclusion), and is invalid otherwise. 
 

2. An argument is (inductively) strong exactly if (and to the extent that) it is invalid and its 
conclusion is probable given its premises (i.e., its premises render its conclusion probable but do 
not guarantee it), and is weak exactly if (and to the extent that) it is invalid and its conclusion is 
improbable given its premises. 
 

3. An argument is confirmatory exactly if (and to the extent that) it is invalid and its premises 
raise the probability of its conclusion (i.e., its conclusion is more probable given that its 
premises are true than given that its premises are false), and is disconfirmatory exactly if (and to 
the extent that) it is invalid and its premises lower the probability of its conclusion. 
 

4. A classification of invalid arguments (in the examples, "IAU" stands for "After conducting a 
thorough survey of celestial objects, the International Astronomical Union has declared"): 
 

Invalid Strong: P(H|E) high Neither: P(H|E) medium Weak: P(H|E) low 
 

Confirmatory: 
P(H|E) > P(H) 

IAU: "No large asteroid will 
hit the Earth next year". 
So: No large asteroid will hit. 

IAU: "50% chance a large 
asteroid will hit next year". 
So: A large asteroid will hit. 

IAU: "30% chance a large 
asteroid will hit next year". 
So: A large asteroid will hit. 

 

Neither: 
P(H|E) = P(H) 

Paris is in France. 
So: No large asteroid will hit 
the Earth next year. 

Paris is in France. 
So: This fair coin will come 
up heads when tossed. 

Paris is in France. 
So: A large asteroid will hit 
the Earth next year. 

 

Disconfirmatory: 
P(H|E) < P(H) 

IAU: "30% chance a large 
asteroid will hit next year". 
So: No large asteroid will hit. 

IAU: "50% chance a large 
asteroid will hit next year". 
So: No large asteroid will hit. 

IAU: "No large asteroid will 
hit the Earth next year". 
So: A large asteroid will hit. 

 

III TRUTH AND PROBABILITY OF PREMISES 
 

1. Truth of premises: A valid argument with false premises is not good in the fullest sense. An 
argument is sound exactly if it is valid and its premises are all true, and is unsound exactly if it is 
not sound (i.e., either it is invalid or it is valid but its premises are not all true). The conclusion of 
a sound argument is true, but an argument with a true conclusion need not be valid or sound. 
 

2. Probability of the premises: True premises can be improbable; e.g., any particular sequence of 
heads and tails in 100 tosses of a coin is improbable, but one sequence is true (i.e., will occur). 
To be good in the fullest sense, an argument must have premises that are not only true but also as 
close to certain (i.e., maximally probable) as possible. 
 

3. Deductive logic evaluates arguments in terms of validity; inductive logic evaluates arguments 
in terms of  strength and confirmation. Logic does not examine the truth of the premises. 
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COMBINATORICS 

 

I. INTRODUCTION 
 

1. The object of combinatorics is to find the number of possible outcomes of a given procedure 
(i.e., the number of ways in which the procedure can be performed). 
 

2. The procedure may be complex, consisting of performing simpler procedures in successive 
steps. E.g., choosing a username and password consists of first choosing a username and then 
choosing a password. 
 

3. Notation: <a, b> is the ordered sequence whose first member is a and whose second member 
is b, and {a, b} is the unordered set whose two members are a and b. So <a, b> ≠ <b, a> but 
{a, b} = {b, a}. 
 

II. THE MULTIPLICATION RULE 
 

1. The rule: Consider k procedures P1, P2, …, Pk. Suppose P1 can be performed in n1 ways, P2 in 
n2 ways, …, and Pk in nk ways. Then the complex procedure which consists of successively 
performing P1, P2, …, and Pk can be performed in n1⋅n2⋅…⋅nk ways. 
 

2. Example: If there are n1 = 800 ways of choosing a username and n2 = 1,000 ways of choosing 
a password, then there are n1⋅n2 = 800,000 ways of first choosing a username and then choosing a 
password. 
 

III. PERMUTATIONS 
 

1. A permutation of n objects is an ordered sequence of the n objects. It corresponds to a way of 
arranging the n objects in a sequence. E.g., there are two permutations of the two objects a and b: 
<a, b> and <b, a>. 
 

2. The number of permutations of n objects is n! (“n factorial”), defined as 1⋅2⋅3⋅…⋅n (by 
definition, 0! = 1). E.g., there are 3! = 1⋅2⋅3 = 6 permutations of 3 objects a, b, and c. They are: 
<a, b, c>, <a, c, b>, <b, a, c>, <b, c, a>, <c, a, b>, and <c, b, a>. 
 

IV. COMBINATIONS 
 

1. A combination of k out of n objects (k ≤ n) is a collection (i.e., an unordered set) consisting of 
k out of the n objects. It corresponds to a way of choosing k out of the n objects without paying 
attention to the order of the k chosen objects. E.g., there are three combinations of 2 out of 3 
objects a, b, and c: {a, b}, {a, c}, and {b, c}. 
 

2. The number of combinations of k out of n objects is �𝑛𝑘� =  𝑛!
𝑘! (𝑛−𝑘)!

 . E.g., there are 

�42� =  4!
2! (4−2)!

=  1∙2∙3∙4
(1∙2) ∙ (1∙2)

=  6 combinations of 2 out of 4 objects a, b, c, and d. They are: 
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. 
 

V. COMBINATORIAL PROBABILITY 
 

1. If there are n possible outcomes of a procedure and a total of m of them satisfy a given 
condition A, then the probability that A will be satisfied is the ratio of m over n: P(A) = m/n. 
(This assumes that all n possible outcomes are equally probable.) 
 

2. Example: There are n = 6 possible outcomes of throwing a fair die and m = 3 of them satisfy 
the condition A that a side with an even number of spots will come up, so P(A) = 3/6 = 0.5. 
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THE UNCONDITIONAL PROBABILITY CALCULUS 
 

I. SAMPLE SPACES 
 

1. A sample space is a set of possibilities (usually, possible outcomes of a procedure) that are 
considered to be of interest and to be mutually exclusive and collectively exhaustive. 
 

2. Example 1: Suppose one tosses a coin. If one is interested in the probability that the coin will 
come up heads, one can choose the sample space {Heads, Tails}. This is a discrete sample space: 
it has a finite number of members. (A sample space with a countably infinite number of members 
is also discrete.) By choosing this sample space, one effectively declares that the possibility that 
the coin will stand on its edge is not of interest. 
 

3. Example 2: Suppose again one tosses a coin. If one is interested in the probability that it will 
take longer than 15 seconds from the moment the coin is tossed until the moment the coin settles, 
one can choose the sample space [0, 1000]; i.e., the interval of real numbers from 0 to 1000. 
Each member of this sample space corresponds to a possible length of time in seconds until the 
coin settles. This is a continuous sample space: it has an uncountably infinite number of 
members. By choosing this sample space, one effectively declares that the possibilities in which 
the coin takes more than 1000 seconds to settle are not of interest. 
 

4. One often chooses a sample space whose members are all equally probable, but this is not 
always possible (consider a biased coin in example 1). Combinatorics can be used to find out the 
size of the sample space. 
 

II. THE OBJECTS OF PROBABILITY: EVENTS (OR PROPOSITIONS) 
 

1. Not everything can have a probability. It makes no sense to talk of the probability of an object, 
for example of a coin (as opposed to, e.g., the probability that the coin will come up heads). Only 
events can have probabilities (e.g., the event that the coin will come up heads). One can alterna-
tively assign probabilities to propositions (e.g., the proposition that the coin will come up heads). 
 

2. An event is (and a proposition is taken to be) a set of possibilities; i.e., a subset of a sample 
space. Example: Suppose a fair die is thrown. Consider the sample space {Side1, Side2, Side3, 
Side4, Side5, Side6}, where Sidei is the possibility that the side with i spots will come up. The 
proposition Even that a side with an even number of spots will come up is the set {Side2, Side4, 
Side6}, a subset of the sample space. (For technical reasons, if a sample space is continuous then 
usually not every subset of it counts as a proposition, but this complication will be ignored.) 
 

3. Since the possibilities in the sample space are considered to be mutually exclusive and 
collectively exhaustive, exactly one of them will be actualized. A proposition is true or false 
(and an event occurs or does not occur) depending on whether the actualized possibility is or not 
a member of the proposition. E.g., if Side4 is actualized (i.e., the side with 4 spots comes up), 
then the proposition Even is true (and the event Even occurs). 
 

4. The contradiction is the proposition that is false no matter what possibility is actualized; i.e., 
the empty set (the set that has no member, denoted by ∅). The tautology is the proposition that is 
true no matter what possibility is actualized; i.e., the sample space (denoted by Ω). 
 

III. COMPLEX PROPOSITIONS 
 

1. The negation of a proposition A is the complement of A (denoted by Ac), namely the set whose 
members are the members of the sample space that are not in A. The negation of A is also 



 

 

denoted by ~A and is true exactly if A is false. E.g., Evenc = {Side1, Side3, Side5} = Odd (the 
proposition that a side with an odd number of spots will come up). 
 

2. The conjunction of propositions A and B is the intersection of A and B (denoted by A ∩ B), 
namely the set whose members are the common members of A and B. The conjunction of A and 
B is also denoted by A & B, or just by AB, and is true exactly if both A and B are true. E.g., if 
Large = {Side4, Side5, Side6} is the proposition that a side with a large number of spots (i.e., at 
least 4) will come up, then Even ∩ Large = {Side4, Side6}. For any A, A ∩ Ac = ∅. 
 

3. The disjunction of propositions A and B is the union of A and B (denoted by A ∪ B), namely 
the set whose members are the members of A plus the members of B. The disjunction of A and B 
is also denoted by A ∨ B and is true exactly if A is true or B is true (or both). E.g., Even ∪ Large 
= {Side2, Side4, Side5, Side6}. For any A, A ∪ Ac = Ω. 
 

4. De Morgan’s Laws: (A ∩ B)c = Ac ∪ Bc and (A ∪ B)c = Ac ∩ Bc. 
 

IV. RELATIONS BETWEEN PROPOSITIONS 
 

1. Propositions A and B are (mutually) incompatible exactly if they cannot be both true; namely, 
they are disjoint (i.e., they have no common member: A ∩ B = ∅). E.g., Even ∩ Odd = ∅. 
 

2. Proposition A entails proposition B exactly if the truth of A guarantees the truth of B; namely, 
A ⊆ B (i.e., every member of A is a member of B). E.g., Even ∩ Odd ⊆ Even. 
 

V. THE AXIOMS OF PROBABILITY 
 

Given a sample space Ω and a set of propositions (i.e., subsets of the sample space), a 
probability measure is a function P that assigns to every proposition a real number and that 
satisfies the following three conditions (axioms): 
 

A1. For any proposition A, P(A) ≥ 0. (Probabilities cannot be negative.) 
 

A2. P(Ω) = 1. (The totality of possibilities, namely the tautology, has probability 1.) 
 

A3. For any (finite or infinite) countable collection of propositions A1, A2, … that are pairwise 
incompatible (i.e., Ai ∩ Aj = ∅ for i ≠ j), P(A1 ∪ A2 ∪ …) = P(A1) + P(A2) + .... (The 
probability of the disjunction of pairwise incompatible propositions is the sum of the 
probabilities of those propositions.) Special case: If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B). 

 

VI. BASIC PROBABILITY THEOREMS 
 

1. Probability of negation: P(Ac) = 1 - P(A). 
2. Probability of contradiction: P(∅) = 0. 
3. If A ⊆ B, then P(A) ≤ P(B). 
4. Upper bound on probabilities: for every proposition A, P(A) ≤ 1. 
5. Probability of disjunction: P(A ∪ B) = P(A) + P(B) - P(A ∩ B). 
 

VII. INDEPENDENCE 
 

1. Propositions A and B are independent exactly if P(A ∩ B) = P(A)P(B). This definition is 
intended to capture the intuitive notion that the truth of A is unrelated to the truth of B. 
 

2. Independence should not be confused with incompatibility (i.e., disjointness). If propositions A 
and B are incompatible, then the truth of A entails that B is not true, so A and B are in general not 
independent. Formally, if A ∩ B = ∅, then P(A ∩ B) = 0, which differs from P(A)P(B) except if 
P(A) = 0 or P(B) = 0. 
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THE CONDITIONAL PROBABILITY CALCULUS 

 

I. CONDITIONAL PROBABILITIES 
 

1. The conditional probability of A given B is P(A|B) = P(A ∩ B)/P(B) if P(B) > 0 (and is for our 
purposes undefined if P(B) = 0). For given B, the function P(•|B) satisfies the probability axioms. 
 

2. Example: Suppose a fair die is thrown. The conditional probability of S6 (i.e., that the side 
with 6 spots will come up) given Even (i.e., given that a side with an even number of spots will 
come up) is P(S6|Even) = 1/3 = (1/6)/(3/6) = P(S6∩Even)/P(Even). The effect of the condition is 
to shrink the sample space. Similarly, P(S6|Odd) = 0 because P(S6∩Odd) = 0. 
 

II. PROBABILITIES OF CONJUNCTIONS 
 

1. Conjunction of two propositions: P(AB) = P(A|B)P(B), from the definition above. 
 

2. Conjunction of three propositions: P(ABC) = P(A|BC)P(BC) = P(A|BC)P(B|C)P(C). 
 

III. THE THEOREM OF TOTAL PROBABILITY 
 

1. The theorem: P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). 
 

2. Proof: P(A) = P(AB ∪ ABc) = P(AB) + P(ABc) = P(A|B)P(B) + P(A|Bc)P(Bc). 
 

3. Example: Urn 1 contains 70 black and 30 white balls, and urn 2 contains 40 black and 60 
white balls. A fair coin is tossed to select one of the urns, and a ball is randomly drawn from the 
selected urn. What is the probability that the ball is black? P(Black) = P(Black|Urn1)P(Urn1) + 
P(Black|Urn2)P(Urn2) =0.7⋅0.5 + 0.4⋅0.5 = 0.55. 
 

IV. BAYES’ THEOREM 
 

1. The theorem: 𝑃(𝐴|𝐵) =  𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)  . 

 

2. Proof: P(A|B) = P(AB)/P(B) = P(BA)/P(B) = P(B|A)P(A)/P(B). 
 

3. Corollary: Use the theorem of total probability to rewrite the denominator in Bayes’s theorem. 
𝑃(𝐴|𝐵)  =  𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|𝐴𝑐)𝑃(𝐴𝑐)
 . 

 

4 Example: A test for AIDS comes out positive (+) with probability 0.97 if the patient has AIDS 
and comes out negative (-) with probability 0.95 if the patient does not have AIDS. If 2% of 
people have AIDS, what is the probability that a patient has AIDS given that the result of the test 
was positive? 𝑃(𝐴𝐼𝐷𝑆|+) = 𝑃(+|𝐴𝐼𝐷𝑆)𝑃(𝐴𝐼𝐷𝑆)

𝑃(+|𝐴𝐼𝐷𝑆)𝑃(𝐴𝐼𝐷𝑆)+𝑃(+|𝐴𝐼𝐷𝑆𝑐)𝑃(𝐴𝐼𝐷𝑆𝑐)
= 0.97∙ 0.02

0.97∙ 0.02+ 0.05∙ 0.98
=  0.284. 

 

V. INDEPENDENCE AND CONFIRMATION 
 

1. The definition of “A and B are independent”, namely P(AB) = P(A)P(B), can be equivalently 
rewritten as P(A|B) = P(A), as P(A|B) = P(A|Bc), as P(A) = P(A|Bc), and so on (interchanging A 
with B), provided that the conditional probabilities are defined. A and B are independent exactly 
if Ac and Bc are independent, and also exactly if A and Bc are independent. 
 

2. The definition of “B (incrementally) confirms A”, namely P(AB) > P(A)P(B), can be 
equivalently rewritten as P(A|B) > P(A), as P(A|B) > P(A|Bc), as P(A) > P(A|Bc), and so on 
(interchanging A with B), provided that the conditional probabilities are defined. So confirmation 
amounts to positive correlation and is symmetric: B confirms A exactly if A confirms B. 
Moreover, A confirms B exactly if Ac confirms Bc, and also exactly if A disconfirms Bc. 
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DISCRETE RANDOM VARIABLES 

 

I. RANDOM VARIABLES 
 

1. Just as a variable is something that can take different values, a random variable is something 
that can take different values with different probabilities. Example: the number of heads in two 
successive tosses of a fair coin is a random variable: it can take the values 0, 1, and 2, with 
probabilities 0.25, 0.50, and 0.25 respectively. 
 

2. Formally, a random variable is a function from a sample space to real numbers. In the coin 
example, the sample space is {TT, TH, HT, HH}, and the random variable “number of heads in 
two tosses” is the function that assigns the number 0 to TT, 1 to TH, 1 to HT, and 2 to HH. 
 

3. The above random variable is discrete: the set of its possible values (i.e., {0, 1, 2}) is discrete. 
A continuous random variable (e.g., temperature) has a continuous set of possible values. 
 

II. BASIC DEFINITIONS 
 

1. The probability mass function (abbreviation: pmf) of a discrete random variable Y is the 
function that gives, for every possible value of Y, the probability that Y takes that value. In the 
coin example, where Y is the number of heads in two tosses, the pmf of Y is the function that 
assigns to the value 0 the probability 0.25, to the value 1 the probability 0.50, and to the value 2 
the probability 0.25. Notation: P(Y = 0) = 0.25, P(Y = 1) = 0.50, and P(Y = 2) = 0.25. 
 

2. The expectation (or expected value, or mean value) of a discrete random variable Y whose 
possible values are y1, y2, … is: E(Y) = y1P(Y = y1) + y2P(Y = y2) + …. In our example, the exp-
ectation is 0⋅0.25 + 1⋅0.50 + 2⋅0.25 = 1. (On average, one can “expect” one head in two tosses.) 
 

3. The variance of a random variable Y with expectation μ is: V(Y) = E(Y2) - μ2 = E((Y - μ)2). In 
our example, the square of the number of heads can take the values 0, 1, and 4, with probabilities 
0.25, 0.50, and 0.25 respectively, so E(Y2) = 0⋅0.25 + 1⋅0.50 + 4⋅0.25 = 1.50. Then V(Y) = 1.50 - 
12 = 0.50. The square root of the variance of Y is called the standard deviation of Y. 
 

4. Random variables X and Y are independent exactly if, for any sets A and B of numbers among 
their possible values, P((X ∈ A) ∩ (Y ∈ B)) = P(X ∈ A)P(Y ∈ B). 
 

III. BERNOULLI PROCESSES 
 

1. A Bernoulli process is a process that consists of repeated independent and identically 
distributed (IID) trials, with each trial having only two possible outcomes, called “success” 
(value 1) and “failure” (value 0). E.g., tossing a fair coin 10 times is a Bernoulli process: each 
toss is a trial (with heads as success and tails as failure, or the other way around) and the 10 trials 
are IID (they have identical probabilities of success and failure). 
 

2. A Bernoulli random variable corresponds to each trial: it has two possible values, 1 and 0, 
with probabilities p and q = 1 - p respectively. Its expectation is p, and its variance is pq. 
 

3. A binomial random variable corresponds to the number of successes in n trials (e.g., number 
of heads in n coin tosses), and is the sum of n IID Bernoulli random variables. It can take values 
k = 0, …, n, with probabilities: P(Y = k) = �𝑛𝑘�𝑝

𝑘𝑞𝑛−𝑘. It has expectation np and variance npq. In 
general, E(Y1 + Y2) = E(Y1) + E(Y2), and, for independent Y1 and Y2, V(Y1 + Y2) = V(Y1) + V(Y2). 
 

4. A geometric random variable corresponds to the number of trials until (and including) the 
first success (e.g., number of tosses until heads appears). It has infinitely many possible values 
(n = 1, 2, …) with probabilities P(Y = n) = qn-1p. Its expectation is 1/p, and its variance is q/p2. 
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CONTINUOUS RANDOM VARIABLES 
 

I. UNIFORM RANDOM VARIABLES 
 

1. Suppose one randomly selects a real number between 0 and 12 (e.g., by spinning a hand of a 
clock). Each number in the interval (0, 12) has the same probability p of being selected. But p 
must be 0: if it were positive, the sum of all probabilities would be infinite (since there are 
infinitely many numbers in the interval), but the sum must be 1. In general, the probability that a 
continuous random variable takes a particular value y is zero: P(Y = y) = 0 for any y. 
 

2. For a continuous random variable, we are interested in the probability that its value falls in a 
range (or set) of possible values. In the clock example, what is the probability that the selected 
number is between 0 and 6? Given the randomness of the selection, P(0 < Y < 6) = P(6 < Y < 12) 
= 0.5 = 6/12. In general, the probability that Y is in an interval (y1, y2) is proportional to the 
length of the interval: P(y1 < Y < y2) = (y2 - y1)/12. It does not matter whether the interval is open 
or closed: P(y1 < Y ≤ y2) = P(y1 < Y < y2) + P(Y = y2) = P(y1 < Y < y2), since P(Y = y2) = 0. 
 

3. The probability that Y is in a set A is the length of A times 1/12; i.e., the area that corresponds 
to A under the graph of the constant function 1/12; i.e., the integral of that function over A. 
 

4. A random variable Y is uniform (or uniformly distributed) over the interval (a, b) exactly if, for 
every measurable subset A of (a, b), the probability that Y takes a value in A is the integral of the 
constant function 1/(b - a) over A. That constant function is the probability density function 
(abbreviation: pdf) of Y. The next step is to consider random variables whose pdf is not constant. 
 

II. BASIC DEFINITIONS 
 

1. The probability density function  of a continuous random variable Y is a non-negative function 
f(y) on all real numbers y such that, for every measurable set A of real numbers, P(Y ∈ A) = 
∫A f(y)dy. In general, f(y) is not P(Y = y), which is 0. Since P (-∞ < Y < +∞) = 1, the area under the 
whole graph of the function f(y) must be 1. This can be so even if f(y) > 1 for some y. The pdf 
replaces the pmf (which is undefined: it would be 0 everywhere). 
 

2. A continuous random variable can be equivalently specified by its cumulative distribution 
function (cdf), namely a function (also defined for discrete random variables) F(y) such that, for 
every real number y, F(y) = P(Y ≤ y). So P(a < Y ≤ b) = F(b) - F(a). Note that f(y) = dF(y)/dy. 
 

3. The expectation of a continuous random variable Y is: E(Y) = ∫ 𝑦𝑓(𝑦)𝑑𝑦.+∞
−∞  The variance of 

Y is, as in the discrete case, V(Y) = E(Y2) - μ2, with μ = E(Y). The expectation of a random 
variable that is uniform over (a, b) is (a + b)/2, and its variance is (b - a)2/12. 
 

III. NORMAL RANDOM VARIABLES 
 

1. A random variable Y is normal (or normally distributed) with parameters μ and σ2 exactly if its 
pdf is: f(y) = (2π)-1/2σ-1exp[-(y - μ)2/(2σ2)]. It can be shown that E(X) = μ and V(X) = σ2. This pdf 
has a “bell-shaped curve” centered around μ. With probability about 0.68, Y is within σ of μ: P(μ 
- σ < Y < μ + σ) = 0.68. With probabilities about 0.95 and 0.999, Y is within 2σ and 3σ of μ. 
 

2. If Y is normal with parameters μ and σ2, then αY + b is normal with parameters aμ + b and 
a2σ2. So Z = (Y - μ)/σ is normal with parameters 0 and 1. Z is called the standard normal random 
variable and is very important because of the Central Limit Theorem: for any sequence Y1, Y2, ... 
of IID random variables with expectation μ and variance σ2, the cdf of Z is the limit, as n → ∞, of 
the cdf of (Y1 + Y2 + … + Yn - nμ)/(σ√𝑛). So Y1 + … + Yn “approximates” a normal random 
variable. E.g., a binomial random variable approximates a normal random variable for large n. 



PHILOSOPHY 210:                       PETER B. M. VRANAS 
REASON IN COMMUNICATION                                        HANDOUT 7 
 

INDUCTIVE LOGIC 
 

I. THREE KINDS OF PROBABILITY 
 

Mathematically, a probability measure is a function that satisfies the probability axioms. But 
what does it mean to say, e.g., that the probability of rain is 0.7 (given the presence of clouds)? 
 

1. It can mean that the (objective) chance of rain is 0.7. Chances are supposed to be features of 
the world, not matters of opinion. They appear in scientific theories (e.g., quantum mechanics, 
statistical mechanics, genetics). We can infer them from relative frequencies. On a common 
view, the chance of a proposition can change over time: the chance that it rains at noon is low at 
6am, is high at 10am, and is 1 at 2pm, assuming it did rain at noon: if A is a true proposition 
about the past, its present chance is 1. The chance of A at time t is denoted by Cht(A). 
 

2. Alternatively, saying that the probability of rain is 0.7 can mean that it is rational (i.e., 
rationally required) to have degree of belief 0.7 in the proposition that it will rain; equivalently, 
every rational agent has this degree of belief. The (subjective) credence of agent g at time t in A, 
denoted by Crgt(A), is the degree of belief that g at t has in A. Credences are relative to times 
(like chances) but are relative to agents and thus subjective (unlike chances). To be rational, an 
agent must have credences that satisfy the probability axioms and some further constraints. 
 

3. Saying that the probability of rain is 0.7 given the presence of clouds can mean that the 
inductive probability of the argument from “There are clouds” to “It will rain” is 0.7. Like 
chances, inductive probabilities are not relative to agents. Unlike chances, inductive probabilities 
are not relative to times either: whether an argument is (inductively) strong cannot change over 
time. The inductive probability of A given B is denoted by In(A|B). (Unlike chances and 
credences, inductive probabilities are primarily conditional, but one can define In(A) as In(A|Ω).) 
 

II. RELATIONS BETWEEN THE THREE KINDS OF PROBABILITY 
 

1. Relation between inductive probabilities and rational credences. For any number x in [0, 1], 
In(A|B) = x exactly if Crgt(A|B) = x (for any rational g and any t at which Crgt(A|B) is defined): 
the inductive probability of an argument is the rational credence in the conclusion given the 
premises of the argument (and given no further information relevant to the conclusion). This 
leaves it open whether there is an independent standard for evaluating inductive probabilities to 
which rational agents conform, or whether inductive probabilities are just defined by agreement 
among rational agents. If Crgt(A|B) differs among rational agents, then In(A|B) is undefined. 
 

2. Relation between chances and rational credences. Rational agents adjust their credences to 
(information about) chances: given only that the chance of A at t is 0.5, the rational credence at t 
in A is 0.5. This is a chance-credence principle: Crgt(A|[Cht(A) = x]) = x (for any rational g). 
Similarly for conditional chances: Crgt(A|B[Cht(A|B) = x]) = x. Rational agents also adjust their 
credences to frequencies: given only that 90% of past tosses of a coin came up heads, the rational 
credence in heads at the next toss is 0.9. Information about chances overrides information about 
frequencies: given only both that 90% of past tosses came up heads and that the present chance 
of heads at the next toss is 0.5, the rational credence in heads at the next toss is 0.5 (not 0.9). 
 

III. TRUTH VERSUS PROBABILITY ONE 
 

1. True proposistions need not have probability one: A true but unknown proposition about the 
future can have both a present chance and a present rational credence less than 1. 
 

2. Probability-one propositions need not be true: If a continuous random variable Y takes the 
value 0.3, the false proposition “Y ≠ 0.3” had chance 1 (since Cht(Y = 0.3) = 0) and credence 1 



 

 

(since rational agents adjust their credences to chances). So the argument from Cht(A) = 1 to A is 
invalid. But it is maximally strong: its inductive probability is 1, since Crgt(A|[Cht(A) = 1]) = 1. 
 

IV. ARGUMENTS WITH PROBABILISTIC CONCLUSIONS 
 

1. Arguments with probabilistic conclusions can be valid; e.g., P(AB) = 0.9 entails P(A) ≥ 0.9. 
(Take the probability axioms to be implicit premises.) But do all such arguments have at least 
one (non-axiomatic) probabilistic premise? One might propose the principle “No Probability In, 
No Probability Out” (NPINPO): no non-trivial argument with a probabilistic conclusion but no 
probabilistic premise is valid. (The qualification “non-trivial” is needed to avoid, e.g., arguments 
with contradictory premises or arguments about the present chances of past events.) 
 

2. Consider the argument from “This card was randomly selected from a standard deck” to “The 
present chance that this card is red is 0.5”. Is this a counterexample to NPINPO? No: the 
argument is invalid. Either a red card was selected, and then the present chance of the card being 
red is 1, or a black card was selected, and then the chance is 0. What about the different 
argument from “A card will be randomly selected from a standard deck” to “The present chance 
that a red card will be selected is 0.5”? This argument is valid but is still no counterexample to 
NPINPO: to say that the card will be randomly selected is to say that each card has the same 
chance of being selected, so the premise is probabilistic after all. 
 

3. The argument form “This card was (somehow) selected from a standard deck” to “This card is 
red” has inductive probability 0.5. So one might think that the argument from “This card was 
(somehow) selected from a standard deck” to “The present rational credence in this card being 
red is 0.5” is valid (and a counterexample to NPINPO). The latter argument is not valid, 
however: if it were valid, then adding any premise would preserve validity, but adding the 
premise “Everyone knows that this card is black” results in a clearly invalid argument. 
 

V. ARGUMENTS WITH PROBABILISTIC PREMISES 
 

1. Probabilistic Modus Ponens. The argument from “If C, then D” and C to D is valid. 
Analogously, the argument from Cht(D|C) = 0.99 and C to D is strong. It has degree of strength 
0.99: by one of the chance-credence principles, Chgt(D|C[Cht(D|C) = 0.99]) = 0.99. 
 

2. Probabilistic Modus Tollens. The argument from “If C, then D” and ~D to ~C is valid. But the 
argument from Cht(D|C) =0.99 and ~D to ~C need not be strong. E.g., the inductive probability 
of the argument from Cht(Jim is not an American Senator|Jim is an American) = 0.99 and “Jim is 
an American Senator” to “Jim is not an American” is zero, not high. 
 

3. The Special Consequence Condition of confirmation. If C entails D and D entails E, then C 
entails E. But if C confirms D and D entails E, C need not confirm E. For example: “This card is 
red” confirms “This card is the ace of hearts”, and “This card is the ace of hearts” entails “This 
card is an ace”, but “This card is red” does not confirm “This card is an ace”. 
 

VI. THE TOTAL EVIDENCE REQUIREMENT 
 

The argument from “80% of US Senators are men” and “X is a US Senator” to “X is a man” has 
degree of strength 0.80. But what about the argument from “80% of US Senators are men” and 
“Barbara Boxer is a US Senator” to “Barbara Boxer is a man”? This also has degree of strength 
0.80, although the different argument that one gets by adding the premise “Almost no one named 
‘Barbara’ is a man” is not strong. This shows that a strong argument with premises known to be 
true may be useless because some further premises known to be true may be relevant to the 
conclusion. According to the Total Evidence Requirement, the credence of a rational agent in a 
proposition A is equal to the inductive probability of the argument whose conclusion is A and 
whose premises constitute the total evidence (relevant to A) that is available to the agent. 
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ESTIMATING PROPORTIONS 

 

I. POPULATIONS, SAMPLES, AND ESTIMATORS 
 

1. The object of estimation is to find out some parameters of a population (e.g., the proportion of 
registered Wisconsin voters who plan to vote in the next election) on the basis of data collected 
from a sample (i.e., a subset of the population; e.g., the respondents in a telephone survey). 
 

2. Suppose the parameter to be estimated is the proportion (i.e., percentage) p of members of the 
population who have a certain feature (e.g., they plan to vote). Suppose the sample is random (or 
randomly selected): every member of the population has the same probability (1/N, where N is 
the population size) of being selected. Then to each member i of the sample (i = 1, …, n, where n 
is the sample size) corresponds a Bernoulli random variable Yi taking the value 1 if the member 
of the sample has the feature (e.g., plans to vote), with probability p, and the value 0 otherwise. 
 

3. An estimator is a random variable that is a function from Y1, …, Yn to possible values of the 
parameter to be estimated. E.g., a simple estimator is the sample mean 𝑌� = (Y1 + … + Yn)/n. 
 

II. POINT ESTIMATES 
 

1. An estimate (or point estimate) of the parameter to be estimated is the value that an estimator 
takes for a given sample. E.g., if for a given sample of size n = 3 we have y1 = 1, y2 = 1, y3 = 0, 
then 𝑦� = (1 + 1 + 0)/3 = 0.67, so the estimate of the proportion (e.g., of those who plan to vote) is 
0.67. (A specific value of 𝑌� is denoted by 𝑦�.) Different samples can result in different estimates. 
 

2. Not knowing the population parameter, we do not know how good an estimate is. A good 
estimator is one that in general yields good estimates. An estimator is unbiased if its expected 
value equals the parameter, and is consistent if it “converges” to the parameter as n increases. 
 

III. INTERVAL ESTIMATES (CONFIDENCE INTERVALS) 
 

1. If the sample is random, then the Bernoulli random variables Yi are independent, so their sum 
Y1 + … + Yn is a binomial random variable, and by the Central Limit Theorem it is approximate-
ly normal (with mean np and variance npq) if n is large (in practice, if n > 20, np > 5, and nq > 5; 
if the sample is without replacement, so the Yi are not independent, the approximation can still be 
used if n/N < 0.10). Then 𝑌� is normal with mean p and variance pq/n. So P(-1.96 < 𝑌�−𝑝

�𝑝𝑞/𝑛
 < 1.96) 

= 0.95. Let the standard error be SE = �𝑌�(1 − 𝑌�)/𝑛. Then one can show that P(𝑌� - 1.96SE < p 
< 𝑌� + 1.96SE) = 0.95. For a value 𝑦� of 𝑌�, the interval (𝑦� - 1.96se, 𝑦� + 1.96se) is called a 95% 
confidence interval for p. E.g., if n = 3 and 𝑦� = 0.67, then se = �0.67(1 − 0.67)/3 = 0.27, so 
(0.67 - 1.96⋅0.27, 0.67 + 1.96⋅0.27) = (0.14, 1.20) is a 95% confidence interval for p. We can 
expect 95% of the confidence intervals constructed from many samples of size 3 to contain p. 
 

2. The above confidence interval, (0.14, 1.20), is very wide and thus not very informative. One 
way to get a narrower confidence interval is to decrease the confidence level. In the above 
example, since P(-1.645 < Z < 1.645) = 0.90, a 90% confidence interval for p is (𝑦� - 1.645se, 𝑦� + 
1.645se) = (0.23, 1.11), which is narrower than the 95% confidence interval, namely (0.14, 1.20). 
 

3. A better way to get a narrower confidence interval is to increase the sample size. E.g., for the 
width of a 95% confidence interval to be 0.02, we need 2⋅1.96se ≤ 0.02, so n ≥ 𝑦�(1 – 𝑦�) 
(1.96/0.01)2. But 𝑦�(1 – 𝑦�) ≤ 0.25 (since 0 ≤ 𝑦� ≤ 1), so it is enough to take n ≥ 0.25(1.96/0.01)2 = 
9604. In general, for a 1 - α confidence interval of width at most d, it is enough to have n ≥ 
(zα/2/d)2. (zα/2 is the point to the right of which the area under the standard normal pdf is α/2.) 
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ESTIMATING AND COMPARING MEANS 
 

I. ESTIMATING MEANS 
 

1. Suppose we want to estimate the mean IQ in the population of UW-Madison students. We 
randomly select a sample of n students. To each member i of the sample (i = 1, 2, …, n) 
corresponds a random variable Yi whose distribution is the same as the distribution of IQ scores 
in our population. Call the mean of the distribution μ (this is the parameter to be estimated) and 
its variance σ2. If n is large (in practice, n > 30), by the Central Limit Theorem the sample mean 
𝑌� = (Y1 + … + Yn)/n is approximately normal with mean μ and variance σ2/n. So 0.95 = 
P(-1.96 < 𝑌

�−µ
σ/√𝑛

 < 1.96) = P(𝑌� - 1.96 σ
√𝑛

 < μ < 𝑌� + 1.96 σ
√𝑛

), and a 95% confidence interval for μ is 

(𝑦� - 1.96 σ
√𝑛

 , 𝑦� + 1.96 σ
√𝑛

), where 𝑦� is the measured value of 𝑌�. Estimate σ2 by the value s2 of the 

sample variance S2 = 1
𝑛−1

∑ (𝑌𝑖 − 𝑌�)2𝑛
𝑖=1  = 1

𝑛−1
(∑ 𝑌𝑖2 − 𝑛𝑌�2)𝑛

𝑖=1  to get (𝑦� - 1.96 𝑠
√𝑛

 , 𝑦� + 1.96 𝑠
√𝑛

) 
as a 95% confidence interval for μ. 
 

2. For a small sample, use this result: if the population distribution is normal, then the random 
variable T = 𝑌

�−µ
𝑆/√𝑛

 has the t distribution with n – 1 degrees of freedom. So a 1 - α small-sample 

confidence interval for μ is (𝑦� - 𝑡α/2,𝑛−1
𝑠
√𝑛

 , 𝑦� + 𝑡α/2,𝑛−1
𝑠
√𝑛

), where 𝑡α/2,𝑛−1 is the value 
(obtained from the table of the t distribution) such that P(-𝑡α/2,𝑛−1 <  𝑇 <  𝑡α/2,𝑛−1) = 1 - α. For 
example, 𝑡0.25,9 = 2.26. 
 

II. HYPOTHESIS TESTING 
 

1. Suppose we want to find out whether the mean IQ μ of UW-Madison students differs from the 
national average of 100. In other words, we want to test the hypothesis that μ = 100 (the null 
hypothesis, denoted by H0; i.e., the hypothesis that there is no difference, that the difference is 
“null”) against the alternative hypothesis (denoted by H1) that μ ≠ 100. A way to perform this 
test is by computing a 95% confidence interval for μ and checking whether if contains 100: if it 
does, the null hypothesis is accepted (and the alternative hypothesis is rejected); if it does not, 
the alternative hypothesis is accepted (and the null hypothesis is rejected). This amounts to 
computing the value t of the random variable T = 𝑌

�− 100
𝑆/√𝑛

 (called the test statistic) and seeing 
whether its absolute value |t| exceeds the critical value  𝑡α/2,𝑛−1. 
 

2. Suppose now we want to find out whether the mean IQ μ of UW-Madison students is greater 
than the national average of 100. In other words, we want to test the null hypothesis H0 that μ = 
100 against the one-sided alternative hypothesis H2 that μ > 100 (because the possibility that μ < 
100 is so remote that we are not interested in it). (By contrast, the previous alternative 
hypothesis, that μ ≠ 100, was two-sided.) Here it will not do to compute a confidence interval for 
μ, since confidence intervals are symmetric and thus correspond to two-sided alternative 
hypotheses. But we can still compute the value t of the test statistic T = 𝑌

�− 100
𝑆/√𝑛

 and see whether t 
(instead of |t|) exceeds the critical value 𝑡α,𝑛−1 (instead of 𝑡α/2,𝑛−1). The idea is that, supposing 
H0 is true, it is improbable that t would be so far away from 0 as to exceed the critical value; so if 
it does exceed it, H0 is rejected (otherwise, H2 is rejected). 
 

3. This way of testing hypotheses can lead to two errors. A type I error occurs when a true null 
hypothesis is rejected, and a type II error occurs when a true alternative hypothesis is rejected. 
(The other two possibilities, namely accepting a true null hypothesis or accepting a true 



 

 

alternative hypothesis, are not errors. We are assuming that either the null or the alternative 
hypothesis is true.) The significance level α used to compute the critical value is the probability 
of a type I error: in the two-sided example, 𝑃𝐻0(reject Ho) = Pμ = 100(

|𝑌�−µ|
𝑆/√𝑛

 > 𝑡α/2,𝑛−1) = α. 
 

4. A type II error occurs when the sample size is small: even if, e.g., μ ≠ 100, for a small sample 
the confidence internal is wide, so the interval may still include 100. We say then that the test 
does not have sufficient power to discriminate the two hypotheses. Formally, if β is the 
probability of a type II error, namely 𝑃𝐻1(reject H1), the power of the test is 1 - β, namely 
𝑃𝐻1(accept H1). To increase power, increase the sample size. 
 

III. COMPARING MEANS 
 

1. Suppose we want to find out whether a new teaching method improves learning. One way to 
do this is by taking n pairs of identical twins and randomly assigning one twin in each pair to the 
new teaching method and the other twin to the old method. Then we give everyone a test to 
measure how much they have learned. Let the scores of those taught by the new method be Xi 
and the scores of those taught by the old method be Yi (i = 1, ..., n; the same i corresponds to the 
two twins in the same pair). We want to test the null hypothesis H0: μX = μY against the 
alternative hypothesis H1: μX > μY. Since the two samples (each of size n) are paired rather than 
independent, in effect we have a single sample of n pairs, so we can consider the differences Di = 
Xi - Yi and test H0: μD = 0 (i.e., μX - μY = 0) against H1 : μD > 0 (i.e., μX - μY > 0). If Xi and Yi are 
normal, then so is Di, so we can use the t statistic to perform the test, just as in the one-sample 
case. 
 

2. Identical twins are hard to come by, however, so an alternative way to find out if the new 
teaching method improves learning is by taking n + m unrelated people and randomly assigning 
n of them (the experimental group) to the new teaching method and the remaining m of them (the 
control group) to the old teaching method. Again, we want to test H0: μX = μY against H1: μX > 
μY. Here is the crucial result: if Xi and Yi are normal and independent, then the random variable 
T = 𝑋

�−𝑌�− (µ𝑋−µ𝑌)

𝑆𝑝�
1
𝑛 + 1𝑚

 (where 𝑆𝑝2 = (𝑛 − 1)𝑆𝑋
2  + (𝑚 − 1)𝑆𝑌

2

𝑛+ 𝑚 − 2
= ∑ (𝑋𝑖 − 𝑋�)2 + ∑ (𝑌𝑖 − 𝑌�)2𝑚

𝑖 = 1
𝑛
𝑖 = 1

𝑛 + 𝑚 − 2
  is the pooled 

variance) has a t distribution with n + m - 2 degrees of freedom. (Strictly speaking, the result also 
assumes that Xi and Yi have the same variances. There are statistical tests one can perform to 
check whether the assumption holds.) 
 

3. For the purpose of finding out whether the new teaching method improved learning in the n + 
m people participating in the experiment, those people need not have been randomly selected 
from a large population. And even if they were randomly selected, the immediate purpose of the 
experiment (and of the statistical test) is to compare the mean scores of the two independent 
samples, not to make an inference about the mean score of a larger population. In this respect 
hypothesis testing differs importantly from estimation. 
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GOODNESS OF FIT 

 

I. NULL HYPOTHESIS: MULTINOMIAL DISTRIBUTION 
 

1. Just as a Bernoulli process consists of repeated IID trials each of which has two possible 
outcomes, a multinomial process consists of repeated IID trials each of which has many (say k) 
possible outcomes; e.g., repeatedly throwing a fair die (six possible outcomes at each trial). Just 
as a binomial distribution corresponds to the numbers of successes and failures in n trials of a 
Bernoulli process, a multinomial distribution corresponds to the numbers of occurrences of each 
possible outcome (e.g., each side of the die) in n trials of a multinomial process; e.g., Yi is the 
number of times side i comes up in n throws (so Y1 + … + Y6 = n). If pi is the probability that 
side i comes up at any trial, p1 + … + p6 = 1. P(Y1 = y1, …, Yk = yk) = 𝑛!

𝑦1!  ...   𝑦𝑘!
𝑝1𝑦1 . . .  𝑝𝑘𝑦𝑘 . 

 

2. Suppose we want to test the null hypothesis that the die is fair, namely that it corresponds to a 
multinomial distribution with p1 = … = p6 = 1/6. We use this result: if the distribution of Y1, …, 
Yk is multinomial with parameters n, p1, …, pk, then the random variable C = ∑ (𝑌𝑖 − 𝑛𝑝𝑖)2

𝑛𝑝𝑖
𝑘
𝑖= 1  has 

approximately a χ2 (chi square) distribution with k - 1 degrees of freedom. (The approximation is 
good if npi ≥ 5 for each i or if n > 5k.) If the value of C exceeds the critical value obtained from 
the table of the χ2 distribution for the desired level of confidence, the null hypothesis is rejected. 
 

3. Example: We toss a die 90 times, and we get side 1, 2, 3, 4, 5, 6 respectively 16, 19, 15, 14, 
12, 14 times. The null hypothesis that the die is fair gives np1 = … = np6 = 90⋅1/6 = 15 > 5, so we 
can apply the χ2 test. The value of C is: [(16 - 15)2 + (19 - 15)2 + (15 - 15)2 + (14 - 15)2 + (12 - 
15)2 + (14 - 15)2]/15 = 28/15 = 1.87. From the table of the χ2 distribution, the critical value for α 
= 0.05 and 5 ( = 6 - 1) degrees of freedom is 11.1 > 1.87, so the null hypothesis is not rejected. 
 

II. NULL HYPOTHESIS: INDEPENDENCE 
 

1. To test the null hypothesis that men and women are equally likely to smoke (i.e., the variables 
of sex and smoking are independent), we select a random sample of 100 people. 

 Smokers Non-smokers Total   Smokers Non-smokers Total 
Men 16 36 52  Men 0.14 0.38 0.52 
Women 11 37 48  Women 0.13 0.35 0.48 
Total 27 73 100  Total 0.27 0.73 1.00 

 Table 1. Observed frequencies.    Table 2. Expected probabilities under H0. 
 

From Table 1, we estimate the probabilities of being a man as 0.52 and a smoker as 0.27. If the 
two variables are independent, then, e.g., the probability of being both a man and a smoker is 
0.52⋅0.27 = 0.14 (Table 2), so 14 of the 100 people are expected to be both men and smokers. 
 

2. The null hypothesis that the two variables are independent amounts to the hypothesis that the 
“pair” of variables has a multinomial distribution with four possible outcomes (smoking man, 
non-smoking man, smoking woman, non-smoking woman) and probabilities given in Table 2. So 
we can use the χ2 test, but we have already “used up” two degrees of freedom to estimate the 
probabilities of being a man and of being a smoker, so the degrees of freedom to be used in the 
test are 4 - 1 - 2 = 1. (In general, if the data are arranged in r rows and c columns, the number of 
degrees of freedom is (r - 1)(c - 1).) For α = 0.99, the critical value is 6.63. The value of the χ2 
statistic is (16 − 14)2

14
 + (36 − 38)2

38
 + (11 − 13)2

13
 + (37 − 35)2

35
 = 0.813 < 6.63, so H0 is not rejected. 

 

3. The χ2 test is to be used only for categorical (not numerical) variables, namely variables 
whose possible values fall into non-numerical categories (e.g., man vs. woman, heads vs. tails). 
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BAYESIAN STATISTICAL INFERENCE 
 

I. BAYESIAN CRITICISMS OF CONFIDENCE INTERVALS 
 

1. Suppose one plans to randomly select a sample of size 100 from a normal population with 
(unknown) mean μ and (known) standard deviation 10. Then P(𝑌� - 1.96 < μ < 𝑌� + 1.96) = 0.95, 
where the probability can be either present chance or present rational credence. Suppose next one 
selects a sample, gets 𝑦� = 5, and constructs the confidence interval (3.04, 6.96). Bayesians claim 
that constructing this interval is pointless, since it is false that P(3.04 < μ < 6.96) = 0.95. This is 
indeed false if the probability is present chance: the chance is 1 or 0, depending on whether μ is 
or not between 3.04 and 6.96. But why is it false if the probability is present rational credence? 
 

2. Bayesians say it is fallacious to infer P(3.04 < μ < 6.96) = 0.95 from the premises P(𝑌� - 1.96 < 
μ < 𝑌� + 1.96) = 0.95 and 𝑌� = 5, just as it is fallacious to infer P(4 is odd) = 0.5 from the premises 
P(the result of throwing the die is odd) = 0.5 and “The result of throwing the die is 4”. Moreover, 
Bayesians grant that if one randomly selects many samples one can expect about 95% of the 
confidence intervals one constructs to include μ, but say it is fallacious to infer from this claim 
about the procedure one uses a probability claim about the confidence interval one constructs. 
 

3. Is it really fallacious, however? Just as the argument from “This card was selected according 
to a procedure that had a 50% chance of selecting a red card” to “This card is red” has inductive 
probability 0.5, the argument from “The confidence interval (3.04, 6.96) was constructed 
according to a procedure that had a 95% chance of constructing a confidence interval including 
μ” to “The confidence interval (3.04, 6.96) includes μ” has inductive probability 0.95. 
Proponents of confidence intervals typically do not talk about inductive probabilities, but what 
they typically say may differ from what can be justifiably said about confidence intervals. 
 

4. Bayesians also note that there are multiple ways to construct confidence intervals: one could 
use various statistics or construct non-symmetric intervals. This observation does not undermine 
the practice of constructing confidence intervals; it just calls for justifying aspects of the practice. 
 

II. BAYESIAN CRITICISMS OF HYPOTHESIS TESTING 
 

1. What does it mean to accept or reject a hypothesis? Bayesians claim that no answer to this 
question works. (a) Is to reject a hypothesis to regard it as definitely false? (This interpretation is 
suggested by the advice of refusing to say that a hypothesis is accepted when it is not rejected, by 
analogy with the falsificationist advice of refusing to say that a hypothesis is verified when it is 
not falsified.) No: it is possible to reject a true hypothesis. (b) Is to reject a hypothesis with α = 
0.05 to regard it as less than 5% probable? No: such an inference is unwarranted. (c) Is to reject 
a hypothesis to decide to act as if it were false? No: how one decides to act depends on further 
factors. (If I reject a hypothesis, I may stop investigating it, but I will not bet my entire fortune 
that it is false.) However, there is a plausible interpretation that Bayesians typically neglect: 
(d) To reject a hypothesis is to believe that it is false (i.e., to disbelieve it). This implies neither 
that one regards it as definitely false, nor that one regards it as less than 5% probable, nor that 
one decides to act as if it were false: binary belief is associated with a range of degrees of belief. 
 

2. Isn’t the null hypothesis always false (so that testing is redundant)? “Are the effects of A and 
B different? They are always different—for some decimal place.” But some null hypotheses are 
true: it often happens that the mean teaching evaluations for two courses taught a given term at a 
given department are exactly the same. Moreover, the objection does not establish that any 
empirical null hypothesis is a priori false: no matter how unlikely, it is still possible that the 
effects of A and B are not different—for any decimal place. Maybe, more charitably, the 



 

 

objection is that H0 is always very unlikely, so one should instead focus on hypotheses like “μ is 
approximately 3”. But if data on the basis of which μ = 3 is rejected provide evidence against μ = 
3, they also provide evidence against “μ is approximately 3”. 
 

3. Wouldn’t the null hypothesis always be rejected with a large enough sample? This objection 
relies on the claim that, if e.g. the null hypothesis is H0: μ = 3, then even if 𝑦� is 3.001 (i.e., very 
close to 3), there is always a large enough sample size n such that (3.001 - 3)/(s/√𝑛) > 1.96, so 
H0 will be rejected. But it is fallacious to infer from this claim that every null hypothesis will be 
rejected if n is large enough: the claim takes 𝑦� as fixed and increases n, but as n increases 𝑦� may 
get closer to μ. E.g., Pearson tossed a coin 24,000 times and got 12,012 heads (50.05%), failing 
to reject the null hypothesis that the coin was fair. The reply that he would had rejected the null 
hypothesis if he had tossed the coin 24,000,000 times and obtained 50.05% heads misses the 
point: maybe he would have gotten 12,000,010 heads (50.00004%). No matter how large the 
sample will be, we do not know a priori that any null hypothesis will be rejected. 
 

4. Aren’t some rejected null hypotheses very probably true? Suppose we know that a population 
percentage p is either 0.4 or 0.6 and we get 𝑦� = 0.401 but the sample is so large that H0: p = 0.4 
is rejected. This seems wrong: the value of 0.401 makes it very probable that p is 0.4 (given that 
p is either 0.4 or 0.6). Moreover, if one had designated p = 0.6 as the null hypothesis, the very 
same data (i.e., 𝑦� = 0.401) would have led one to reject p = 0.6 (instead of rejecting p = 0.4). 
These criticisms, however, work only against the (practically nonexistent) cases in which H0 and 
H1 are simple, not against the (standard) cases in which H1 is composite (e.g., μ > 3 or μ ≠ 3). 
 

5. Isn’t the logic of null hypothesis testing fallacious? Let D (for “data”) be the proposition that 
an extreme (i.e., higher than the critical value) value of the test statistic (e.g., the sample mean) 
was obtained. The argument behind null hypothesis testing, namely the argument from P(D|H0) 
= 0.05 (i.e., P(~D|H0) = 0.95) and D to ~H0 is an instance of probabilistic modus tollens, which 
is not always inductively strong. It is true that the argument from P(H0|D) = 0.05 and D to ~H0 is 
always strong (it has inductive probability 0.95, by probabilistic modus ponens), but it is 
fallacious to infer P(H0|D) = 0.05 from P(D|H0) = 0.05. Classical statisticians grant this but reply 
that in practice P(H0|D) and P(D|H0) are highly correlated, so that it is unfair to focus on 
contrived cases in which they are very different. Compare: using Newtonian mechanics is 
justified for speeds low relative to the speed of light, where it gives good approximations. 
 

III. A BAYESIAN ALTERNATIVE TO CLASSICAL STATISTICS 
 

1. Bayesian statistical inference starts with the assignment of prior probabilities to hypotheses 
(which classical statisticians avoid). These prior probabilities are credences; usually they are not 
rationally required, but they must be rationally permitted (e.g., they must satisfy the probability 
axioms). Typically many assignments of prior probabilities are rationally permitted, and the 
arbitrariness of any such assignment is a standard objection to Bayesianism. Bayesians reply that 
typically it does not matter what prior probabilities one starts with: as evidence accumulates, 
people who start with different prior probabilities end up with similar posterior probabilities. 
 

2. The main component of Bayesian statistical inference is the application of Bayes’ theorem to 
compute the posterior probability of a hypothesis H given the evidence E. But to compute the 
posterior probability P(H|E), one needs not only P(E|H) and the prior probability P(H), but also 
P(E|Hc). Sometimes P(E|Hc) is available (e.g., P(test positive|patient does not have AIDS)), but 
often it is unavailable (e.g., P(deflection of sunlight|General Theory of Relativity is false). 
 

3. Another worry is that Bayesian statistical inference seems to make no difference in practice. 
Bayesians talk of “credible intervals” instead of “confidence intervals” and of posterior 
probabilities instead of accepting or rejecting hypotheses, but they still (dis)believe certain 
hypotheses; must these hypotheses be different from those that classical statisticians (dis)believe? 
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DECISION THEORY 
 

I. DECISION PROBLEMS 
 

1. Informally, a decision problem is an agent’s problem of choosing among alternative courses of 
action at a given time. For example, the problem of choosing (i.e., deciding) whether to satisfy a 
friend’s request to lend her $1,000. 
 

2. Formally, a decision problem has three components. (1) A set of possible actions (e.g., lend 
the money vs. not lend the money). (2) A set of possible states of the world on which the 
consequences of the agent’s possible actions depend (e.g., the friend returns the money vs. does 
not return the money if you lend it). (3) A set of outcomes associated with each combination of 
an action and a state (e.g., losing $1,000 if you lend the money but the friend does not return it). 
 

3. It is convenient to take actions, states, and outcomes to be propositions (e.g., the proposition 
that you lend the money). The actions must be mutually exclusive and collectively exhaustive, 
and so must be the states. The outcomes must include all relevant consequences of the actions. 
 

II. EXPECTED UTILITY MAXIMIZATION 
 

1. The expected utility of an action A, denoted by EU(A), is the sum, over all states, of the 
product of the probabilities (rational credences) of the states with the values (or utilities) of the 
outcomes. Utilities are often understood as monetary values. For example, suppose you are 
offered to pay $1,000 for the following gamble: a fair coin will be tossed 5 times, and you will 
get nothing if the coin comes up heads all 5 times (with probability 0.55 = 0.03125), but you will 
get $10,000 otherwise (with probability 1 - 0.55 = 0.96875). The expected utility of refusing to 
play is 0, and the expected utility of playing is 0.03125⋅(-$1,000) + 0.96875⋅$9,000 = $8,678.5. 
 

2. According to the principle of expected utility maximization (EUM), an agent is rationally 
required to choose an action that maximizes (i.e., has highest) expected utility. So it seems that, 
according to EUM, in the above example you should pay and play. 
 

3. Things are not so simple, however. $1,000 may be a lot of money for you, so it need not be 
irrational to balk at the small chance (around 3%) that you will lose it. Moreover, the St. 
Petersburg game (which gives you $2n if a coin first comes up heads at the nth toss and 0 
otherwise) has infinite expected utility, but it need not be irrational to refuse to pay even $100 to 
play, even if $100 is not a lot of money for you. Also, suppose you are offered a bet that gives 
you $1,000,000,000,000 with probability 0.001 but requires you to pay $1,000,000 with 
probability 0.999; it seems clearly irrational to accept the bet, although its expected utility is 
$999,001,000. Finally, in many cases non-monetary values are relevant (e.g., the value of 
helping your friend by lending her the money); how are utilities defined in such cases? 
 

III. CLASICAL EXPECTED UTILITY THEORY 
 

1. To answer these objections, here is a theoretical justification for EUM: it can be shown that, if 
your preferences among propositions satisfy certain rationality constraints, then there is a unique 
probability measure on states and a utility function (unique up to the arbitrary choice of a unit 
and a zero point) on outcomes such that you prefer action A to A′ exactly if EU(A) > EU(A′), and 
you are indifferent among A and A′ exactly if EU(A) = EU(A′). This result is a representation 
theorem: your preferences can be represented by an expected utility function. If you are rational, 
you always choose as if you were maximizing expected utility. 
 

2. So the usual introductory presentations of EUM are misleading. EUM is not a decision 
procedure, a way of finding out which action to choose: EUM does not require an agent to 



 

 

consciously assign probabilities to states and utilities to outcomes and compute the expected 
utilities of actions with the goal of maximizing expected utility. Instead, EUM requires that an 
agent’s preferences be compatible with the existence of a probability and a utility function such 
that the corresponding expected utility function represents those preferences. More specifically, 
EUM requires that an agent’s preferences over actions satisfy the rationality constraints specified 
in a representation theorem. This does not mean that expected utility calculations are useless: 
often they roughly correspond to the expected utilities that represent one’s preferences. 
 

IV. THE ALLAIS PARADOX 
 

1. An integer from 1 to 100 will be randomly selected. You are given a choice between C and D: 
C: You get $500,000 if the integer is from 90 to 100 (prob. 0.11), otherwise you get nothing (prob. 0.89). 
D: You get $2,500,000 if the integer is from 91 to 100 (prob. 0.10), otherwise you get nothing (prob. 0.90). 

 

2. Now you are given a choice between F and G: 
F: You get a gift of $500,000 (no strings attached, prob. 1). 
G: You get $2,500,000 if the integer is from 91 to 100 (prob. 0.10), you get $500,000 if the integer is from 1 to 
89 (prob. 0.89), and you get nothing if the integer is 90 (prob. 0.01). 

 

3. Most people prefer D to C and F to G, but the expected monetary values are $55,000 for G, 
$250,000 for D, $500,00 for F, and $695,000 for G. One can appeal to the following rationality 
constraint to argue that these preferences are irrational: if a rational agent’s conditional 
preferences between A and A′ and between B and B′ given any state are the same, then the 
agent’s unconditional preferences between A and A′ and between B and B′ are also the same. 

Selected integer 1-89 90 91-100 
Option C 0 $500,000 $500,000 
Option D 0 0 $2,500,000 
Option F $500,000 $500,000 $500,000 
Option G $500,000 0 $2,500,000 

 

V. EVIDENTIAL EXPECTED UTILITY THEORY 
 

1. Another rationality constraint is the dominance principle (or sure-thing principle): if a rational 
agent prefers A over A′ conditionally on some states and does not prefer A′ over A conditionally 
on any state, then the agent unconditionally prefers A over A′. E.g., assuming option X gives you 
$10 if the coin comes up heads and nothing otherwise but option Y gives you $100 if the coin 
comes up heads and nothing otherwise, you should prefer Y to X. 
 

2. Objection: Should you spend the night partying or studying for tomorrow’s exam? 
Conditionally on passing the exam, you prefer partying to studying. Conditionally on failing, you 
prefer partying to studying. According to the dominance principle, then, you should prefer 
partying to studying. But this reasoning ignores the fact that you are much more likely to pass if 
you study than if you party. The standard reply is that the dominance principle does not apply in 
such cases: classical expected utility theory assumes that the probabilities of the states do not 
depend on the agent’s actions. But then classical expected utility theory is seriously incomplete. 
 

3. To avoid this problem, maximize not expected utility, defined as EU(A) = ΣsP(S)u(O[A, S]) 
(where O[A, S] is the outcome of action A under state S), but rather evidential expected utility, 
defined as EEU(A) = ΣsP(S|A)u(O[A, S]). A representation theorem can be proven. 
 

VI. NEWCOMB’S PARADOX 
 

1. A statement of the paradox by Joyce: 
Suppose there is a brilliant (and very rich) psychologist who knows you so well that he can predict your 
choices with a high degree of accuracy. One Monday as you are on the way to the bank he stops you, holds 
out a thousand dollar bill, and says: “You may take this if you like, but I must warn you that there is a catch. 
This past Friday I made a prediction about what your decision would be. I deposited $1,000,000 into your 



 

 

bank account on that day if I thought you would refuse my offer, but I deposited nothing if I thought you 
would accept. The money is already either in the bank or not, and nothing you now do can change this fact. 
Do you want the extra $1,000?” You have seen the psychologist carry out this experiment on two hundred 
people, one hundred of whom took the cash and one hundred of whom did not, and he correctly forecast all 
but one choice. There is no magic in this. He does not, for instance, have a crystal ball that allows him to 
“foresee” what you choose. All his predictions were made solely on the basis of knowledge of facts about the 
history of the world up to Friday. He may know that you have a gene that predetermines your choice ... 

 

2. Given that whether you take the $1,000 has no causal effect on what amount is already in your 
bank account, it seems irrational to refuse the $1,000. But here is a standard objection (Sugden): 

Imagine two people, irrational Irene and rational Rachel, who go through the experiment. Irene [refuses the 
money] and wins $1 million. Rachel [takes the money] and wins $1,000. Rachel then asks Irene why she 
didn’t [take the extra thousand]; surely Irene can see that she has just thrown away $1,000. Irene has an 
obvious reply: “If you’re so smart why ain’t you rich?” This reply deserves to be taken seriously. ... The 
relevant difference between Irene and Rachel is that they reason in different ways. As a result of this 
difference, Irene finishes up with $1 million and Rachel with $1,000. Irene’s mode of reasoning has been 
more successful ... So, are we entitled to conclude that, nevertheless, it is Rachel who is rational? 

 

3. Irene’s reply changes the subject. Rachel could reply: “My question was why you didn’t take 
the money. I know why I am not rich: because I am not the kind of person the psychologist 
thinks will refuse the money. Given that I know I am the type who takes the money, the $1,000 
was the most I was going to get, so the reasonable thing for me to do was to take it.” Irene might 
respond: “But don’t you wish you were like me, Rachel?” Rachel can grant that she wishes she 
were like Irene (i.e., the type who refuses the money), but this is not to endorse Irene’s reasoning. 
 

VII. CAUSAL DECISION THEORY 
 

1. Evidential decision theory gives the wrong result in Newcomb’s decision problem (i.e., that 
one should refuse the money): EEU(Refuse) = P(Predicted refusal|Refuse)⋅$1,000,000 + 
P(Predicted acceptance|Refuse)⋅0 = $1,000,000 > EEU(Accept) = P(Predicted refusal|Accept)⋅ 
$1,001,000 + P(Predicted acceptance|Accept)⋅$1,000 = $1,000. 
 

2. To avoid this problem, maximize not evidential expected utility, but rather causal expected 
utility, defined as CEU(A) = ΣsP*(S|A)u(O[A, S]), where P*(•|A) is a probability measure 
reflecting your judgments about your ability to causally influence events by doing A. P*(S|A) is 
high either when you think that A will cause S or when you think that S is likely to hold whether 
or not A does. On a common proposal, P*(S|A) = P(If I were to do A, S would hold). 
 

3. Causal decision theory gives the right result in Newcomb’s decision problem (i.e., one should 
accept the money): CEU(Refuse) = P*(Predicted refusal|Refuse)⋅$1,000,000 + P*(Predicted 
acceptance|Refuse)⋅0 = $1,000,000 = p⋅$1,000,000 < CEU(Accept) = P*(Predicted refusal| 
Accept)⋅$1,001,000 + P*(Predicted acceptance|Accept)⋅$1,000 = p⋅$1,001,000 + (1 - p)⋅$1,000. 
 

VIII. SIMPSON’S PARADOX 
 

1. Here are success rates and numbers of cured/treated cases for two treatments of kidney stones. 
Kind of stones Treatment A Treatment B 
Small stones 93% (= 81/87) 87% (= 234/270) 
Large stones 73% (= 192/263) 69% (= 55/80) 
Both 78% (= 273/350) 83% (= 289/350) 

Treatment A seems more effective than B on small stones, and also on large stones, but overall B 
seems more effective than A. Explanation: Doctors tend to give the severe cases (large stones) 
the better treatment (A), and the milder cases (small stones) the inferior treatment (B). 
 

2. To choose a treatment, should one consult the aggregated or the partitioned data? If one does 
not know the size of the stone, should one administer treatment B? According to causal decision 
theory, one should look at the causal story: the conditional probabilities are not enough. 
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CAUSAL REASONING 
 

I. NECESSARY AND SUFFICIENT CONDITIONS 
 

1. Watering plants causes them to grow in the sense that watering is necessary (i.e., required) for 
growth: in the absence of watering, no growth occurs. But watering is not sufficient (i.e., not 
enough) for growth: sunlight is also necessary. 
 

2. Decapitation causes death in the sense that decapitation is sufficient for death: whenever 
decapitation occurs, death occurs. But decapitation is not necessary for death: death can occur 
without decapitation (e.g., drowning is also sufficient). 
 

3. The action of a force causes a body to accelerate in the sense that the action of a force is both 
necessary and sufficient for acceleration: whenever a force acts, acceleration occurs, and 
whenever no force acts, no acceleration occurs. 
 

4. What counts as necessary or sufficient may vary with the circumstances: heating water to 
100oC is in normal circumstances both necessary and sufficient for boiling the water, but is not 
necessary if one is at high altitude, and is not sufficient if the water contains impurities. 
 

5. To prevent a phenomenon, look for a necessary condition: to eradicate yellow fever, 
exterminate the anopheles mosquito, since the mosquito causes (i.e., is necessary for) the spread 
of the disease. To produce a phenomenon, look for a sufficient condition: to increase muscular 
strength, exercise regularly, since exercise causes (i.e., is sufficient for) increasing strength. 
 

II. PROBABILISTIC CAUSATION AND CAUSAL NETWORKS 
 

1. Smoking causes lung cancer in the sense that smoking increases the probability of getting 
lung cancer. Smoking is not necessary for lung cancer: one can get lung cancer even if one never 
smokes. Smoking is not sufficient for lung cancer: not everyone who smokes gets lung cancer. 
 

2. Suppose Smith shoots Jones because Jones slept with Smith’s spouse; Jones is taken to 
surgery and suffocates after an allergic reaction to an anesthetic. The coroner may be interested 
in the proximate cause of death, namely suffocation. The prosecutor may be interested in the 
salient cause of death, namely the shooting. The psychiatrist may be interested in a remote cause 
of death, namely Smith’s miserable childhood. All these causes are parts of a causal network. 
 

3. Singular causation is causation of a single event (e.g., Caesar’s death). General causation is 
causation of a class of events (e.g., deaths by lung cancer). Assuming that nature is uniform, 
singular and general causation are related: if an event C caused an event E, there must be a 
causal law to the effect that, in similar circumstances, events like C cause events like E. 
 

III. MILL’S METHODS OF AGREEMENT AND DIFFERENCE 
 

1. The positive method of agreement (eliminating features as not necessary): If only one among 
the features under consideration is present in all observed positive instances of a phenomenon, 
then only that feature can be necessary for the phenomenon. (The remaining features cannot be 
necessary, since each of them is absent in at least one positive instance of the phenomenon.) 
 

2. Example: Here are the foods eaten by three people who got sick (+: eaten; - : not eaten). 
Observed 
instance 

Feature A: 
Spaghetti 

Feature B: 
Steak 

Feature C: 
Ice cream 

Feature D: 
Orange juice 

Phenomenon: 
Sickness 

Alice + + - - + 
Bob + + - + + 

Charlie - + + + + 



 

 

Only the steak was eaten by everyone who got sick, so only the steak can be necessary for 
sickness. The ice cream cannot be necessary, since it was not eaten by Bob, who got sick. 
Similarly, the remaining foods can be eliminated as not necessary. 

 

3. Limitations of the method. (a) Maybe none of the features under consideration is necessary: 
maybe the sickness was caused not by the steak, but by the use of dirty forks, a feature not in the 
list. (b). Maybe there is no single common cause of all observed positive instances: maybe 
Alice’s and Bob’s sickness was caused by the spaghetti, but Charlie’s was caused by the ice 
cream. (c) Maybe the identified single common feature is not present in other, unobserved 
positive instances: maybe Derek did not eat the steak but also got sick. (d) It is very hard to find 
a unique common feature if the list of features is reasonably comprehensive: in addition to 
having all eaten steak, Alice, Bob, and Charlie also all used forks, drank water, etc. 
 

4. The negative method of agreement (eliminating features as not sufficient): If only one among 
the features under consideration is absent in all observed negative instances of a phenomenon, 
then only that feature can be sufficient for the phenomenon. (The remaining features cannot be 
sufficient, since each of them is present in at least one negative instance of the phenomenon.) 
Example: Given the table below, only feature D can be sufficient for the phenomenon. 

Instance Feature A Feature B Feature C Feature D Phenomenon 
1 + + - - - 
2 + - + - - 

 

5. The double method of agreement (eliminating features as not both necessary and sufficient): If 
only one among the features under consideration is both present in all observed positive 
instances and absent in all observed negative instances of a phenomenon, then only that feature 
can be both necessary and sufficient for the phenomenon. Example: Given the table below, only 
feature B can be both necessary and sufficient for the phenomenon. 

Instance Feature A Feature B Feature C Feature D Phenomenon 
1 + + - - + 
2 + - + - - 

 

6. The method of difference is a special case of the double method of agreement in which all 
feature columns except one consist only of + or only of -. This method is used in controlled 
experiments. Example: Given the table below, only C can be both necessary and sufficient. 

Instance Feature A Feature B Feature C Feature D Phenomenon 
1 + - + + + 
2 + - - + - 
3 + - - + - 

 

7. To summarize, all four methods try to find a single feature column that has exactly the same 
pattern of + and - as the phenomenon column, but (a) the positive method of agreement considers 
only phenomenon columns with all +, (b) the negative method of agreement considers only 
phenomenon columns with all -, and (c) the double method of agreement and the method of 
difference consider only phenomenon columns with both + and -. 
 

8. A complication: complex features. Maybe only the disjunction (or the conjunction, etc.) of two 
or more simpler features is necessary (or sufficient, or both) for a phenomenon. This can be 
accounted for by expanding the list of features so as to include logical combinations of simpler 
features. Example: Given the table, neither A nor B can be necessary, but their disjunction can. 

Observed 
instance 

Feature A: 
Studying hard 

Feature B: 
Being very smart 

Feature A ∪ B: 
Studying hard or being very smart 

Phenomenon: 
Succeeding 

Alice - + + + 
Bob + - + + 

 
 



 

 

IV. THE METHOD OF CORRELATION (CONCOMITANT VARIATION) 
 

1. The methods of agreement and difference assume that features and phenomena are either 
present or absent. But often they come in degrees: studying hard, being smart, and having 
successes can be present to a greater or lesser extent. If an increase or decrease in one variable is 
accompanied by an increase or decrease in another (e.g., studying more or less hard is 
accompanied by having more or fewer successes), there is a correlation between the two 
variables, and this indicates (but does not guarantee) a causal connection. 
 

2. The correlation coefficient of two random variables X and Y is: ρ(X, Y) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)
σ𝑋σ𝑌

. It 
can be shown that ρ is between -1 and 1. If ρ > 0, X and Y are positively correlated: as X 
increases, Y increases, and as X decreases, Y decreases. If ρ < 0, X and Y are negatively 
correlated: as X increases, Y decreases, and as X decreases, Y increases. If ρ = -1 or 
ρ = 1, there is a perfect linear relation between X and Y: with probability 1, Y = aX + b. If X and 
Y are independent, then ρ = 0. But if ρ = 0, X and Y need not be independent: Y may be a non-
linear function of X (e.g., Y = X2). 
 

3. Correlation is symmetric, but causation is not. If X is correlated with Y, does X cause Y or does 
Y cause X? To answer this question, look at changes over time: if increases or decreases in X are 
followed by increases or decreases in Y, this suggests that X causes Y, since causes come before 
their effects. But there is no guarantee that X causes Y: the correlation may be coincidental. Or 
the correlation may be due to a common cause of X and Y. E.g., the correlation between falling 
barometers and stormy weather is due to a common cause: a sharp drop in atmospheric pressure. 
 

4. Longitudinal (or diachronic) studies that find correlations between changes in values of 
variables over a time period usually provide stronger evidence for causation than cross-sectional 
(or synchronic) studies that find correlations between values of variables at a particular time. 
Experimental studies (especially randomized ones), in which an intervention is made (e.g., a 
drug is given), usually provide stronger evidence for causation than observational studies. 
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ANALOGICAL REASONING 
 

I. REPRESENTING ANALOGICAL ARGUMENTS 
 

1. Analogical reasoning is used all the time: judges decide how to apply the law by making 
analogies with how the law was applied in the past, scientists formulate hypotheses about the 
effects of chemicals on humans by analogy with their effects on animals, and so on. 
 

2. An analogical argument has the following form: 
 (1) Source is similar to Target in certain respects. 
 (2) Source has some further feature Q. 
    So: (3) Target also has Q or some feature Q* similar to Q. 
 

3. Tabular representation of an analogical argument: 
 

 Domains:   Earth (Source)   Mars (Target) 
 Known similarities:  Has a moon (P)  Has moons (P*) 
 Known dissimilarities: Has surface water (A)  Has little surface water (~A*) 
 Inferred similarity:  Supports life (Q)  Supports microbial life (Q*) 
 

4. The horizontal relations are the relations between Source and Target: the relations of 
similarity between P and P*, and the relations of dissimilarity between A and ~A*. The vertical 
relations are the relations between features of Source: the prior association between P and Q. 
 

II. CLASSIFYING ANALOGICAL ARGUMENTS 
 

The classification is based on the nature (inductive vs. deductive) and on the direction (from P to 
Q, from Q to P, both, or neither) of the prior association between P and Q. 
Nature of 
association 

Direction of association 
Predictive 
(from P to Q) 

Explanatory 
(from Q to P) 

Functional 
(both directions) 

Correlative 
(no direction) 

Deductive Mathematical Abductive — — 
Inductive Predictive/Probabilistic Abductive/Probabilistic Functional Correlative 

 

One gets then six types of analogical arguments: 
 

1. Mathematical: The three medians of any triangle have a common intersection. By analogy, the 
four medians of any tetrahedron have a common intersection. 
 

2. Predictive/Probabilistic: Microbes have been found to thrive in frozen lakes in Antarctica and 
glaciers in Greenland. By analogy, there may be microbial life on Mars. 
 

3. Abductive: The absence of force inside a hollow spherical shell is a consequence of, and thus 
can be explained by, the fact that the gravitational force between masses follows an inverse 
square law. By analogy, the absence of electrical influence inside a hollow charged spherical 
shell suggests that charges attract and repel each other with an inverse square force. 
 

4. Abductive/Probabilistic: The predominance of useful traits among domesticated animals is 
explained by artificial selection (i.e., breeding). By analogy, the predominance of useful traits 
among animals in the wild is explained by natural selection. 
 

5. Functional (inferring similarities in function from similarities in form): In addition to bowl-
shaped lamps, carved from rock, inside which animal fat is burned, Inuit groups occasionally use 
flat, uncarved slabs that allow fuel to spill over the sides as makeshift lamps when traveling and 
pressed for time. By analogy, flat slabs bearing traces of burned fat found by archaeologists in 
Southern Europe had the same function during the Ice Age. 
 



 

 

6. Correlative: Morphine is an effective painkiller and induces an S-shaped tail curvature in 
mice. By analogy, the observation (in 1934) that meperidine (know also known as Demerol) 
induced an S-shaped tail curvature in mice suggested that meperidine has painkilling properties. 
 

III. EVALUATING ANALOGICAL ARGUMENTS 
 

1. Commonsense guidelines. 
• The more similarities (between Source and Target), the stronger the analogy. The more 

differences, the weaker the analogy. 
• Analogies involving casual relations are more plausible than those not involving causal 

relations, and structural analogies are stronger than those based on superficial similarities. 
• The relevance of the similarities and differences to the conclusion must be taken into 

account. 
• The weaker the conclusion, the more plausible the analogy. 

These guidelines are of limited use. How to count similarities? How to determine relevance? 
 

2. A three-step procedure to evaluate analogical arguments. 
 

Preliminary step: Represent the argument in tabular form (identify P, P*, Q, Q*). 
 

First step: Formulate explicitly the prior association between P and Q and evaluate it. Is it valid 
(if deductive), is it strong (if inductive), is it a good explanation (if abductive), is there a high or 
at least a statistically significant correlation (if correlative)? If the prior association fails to satisfy 
these standards, then the analogical argument cannot be strong. 
 

Second step: Determine which features are relevant to the evaluation of the argument, in the 
sense of playing an essential role in the prior association between P and Q. If the association is 
deductive, which premises are indispensable and which ones are redundant? If the association is 
predictive, which causal factors are important? 
 

Third step: Assess the potential for generalizing the prior association. Do the essential features 
identified in the second step have analogues in Target that are known to hold, or at least not 
known not to hold? Are there reasons to believe that generalization might be blocked? 
 
Source: P. Bartha, By parallel reasoning: The construction and evaluation of analogical 
arguments (Oxford University Press, 2010). 
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