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AMBIGUOUS METALOGICAL TERMS 
 

 Argument Sentence Proof procedure Theory (Formal system) 
 
 

‘Valid’ 

An argument is valid 
exactly if it is necessary 
that if all of its premises 
are true then its conclusion 
is also true. 

A sentence is valid exactly 
if it is true in every 
interpretation. 

  

 
 

‘Sound’ 

An argument is sound 
exactly if it is valid and all 
of its premises are true. 

 A proof procedure is 
sound exactly if every 
sequent that is derivable 
according to the procedure 
is secure. 

 

 
 

‘Complete’, 
‘Incomplete’ 

  A proof procedure is 
complete exactly if every 
secure sequent is derivable 
according to the procedure. 

A theory is complete 
exactly if, for every 
sentence of its language, 
either the sentence or its 
negation is in the theory. 

 
 

‘Decidable’, 
‘Undecidable’ 

 A sentence is undecidable 
in (or by or for) a theory 
exactly if neither the 
sentence nor its negation is 
in the theory. 

 A theory is decidable 
exactly if there is an 
effective procedure for 
determining, for every 
sentence, whether or not it 
is in the theory. 
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INTRODUCTION TO LOGIC 
 

I. SENTENCES VERSUS PROPOSITIONS 
 

1. Different sentence-tokens can belong to the same sentence-type: I say “Good morning” and 
you say “Good morning”. 
 

2. A sentence is always a sentence of some (natural or formal) language: “Καλημέρα”. 
 

3. Different sentences can express the same proposition: “Good morning” and “Καλημέρα”. 
 

4. Propositions are true or false, but sentences are not true or false: “He is married” is not true 
or false. 
 

II. ARGUMENTS VERSUS ARGUMENT FORMS 
 

1. An argument is an ordered pair whose first member is a set of propositions (the premises of 
the argument) and whose second member is a proposition (the conclusion of the argument). 
 

2. An argument form is an ordered pair whose first member is a set of sentences in some 
formal language and whose second member is a sentence in that language. 
 

3. An argument instantiates an argument form exactly if (roughly) the sentences which 
constitute the argument form can express the propositions which constitute the argument. 
 

4. An argument in general instantiates more than one argument form: 
 

Sam and Jill are parents  Q & R   Ps & Pj ∃xPsx & ∃xPjx 
 ----------------------------- instantiates -------- but also ---------  and ------------------- 

Jill is a parent    R   Pj  ∃xPjx 
 

III. VALIDITY VERSUS LOGICAL VALIDITY 
 

1. An argument is valid exactly if it is necessary that if all of its premises are true then its 
conclusion is also true. 
 

2. An argument form is valid exactly if _____. Filling in the blank is one main object of 
logic. There are two ways to fill in the blank: a syntactic way, corresponding to the notion of 
derivability, and a semantic way, corresponding to the notion of logical consequence. 
 

3. Important definition: An argument is logically valid exactly if it instantiates at least one 
valid argument form. 

Smith drank water  Smith and Jones are male 
Compare ----------------------     with      ------------------------------- 

Smith drank H2O  Smith is male 
 

4. An argument can be logically valid even if it instantiates some invalid argument form: 
 

Every human is mortal and Socrates is human  Q & R 
-------------------------------------------------------   instantiates --------, an invalid  
Socrates is mortal      S 

argument form, but is logically valid because it also instantiates some valid argument form. 
 

5. We have no good method for proving the logical invalidity (as opposed to the logical 
validity) of arguments (as opposed to proving the invalidity of argument forms): it is not 
enough to show that the argument instantiates many invalid argument forms, because the 
argument may also instantiate some other, valid argument form and thus be logically valid. 
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SYNTAX FOR FIRST-ORDER LOGIC 
 

I. SYMBOLS AND LANGUAGES 
 

1. Logical symbols 
(a) Connective symbols: (d) Quantifier symbols: 
 - Tilde: ~ (‘not’)  - Inverted ay:         ∀ (‘for every’) 
 - Ampersand: & (‘and’)  - Reversed ee:         ∃ (‘for at least one’) 
 - Wedge: ∨ (‘or’) (e) Punctuation symbols: 
 - Arrow: → (‘only if’)  - Left parenthesis:   ( 
 - Double arrow: ↔ (‘exactly if’)  - Right parenthesis: ) 
(b) Variables: x, y, z, ...   - Comma:                , 
(c) Identity symbol: = [not always present] 
 

2. Nonlogical symbols (no symbol is of more than one kind) 
 (a) Constants (individual symbols):  a, b, c, ... 
 (b) Predicates (relation symbols):  P, Q, R, ... 
 (c) Function symbols:  ′ (accent), + (plus sign), • (times sign), ... 
 

3. A language is an enumerable [i.e., finite or denumerable] set of nonlogical symbols. The 
language of arithmetic, L*, is {0, <, ′, +, •}. 
 

II. TERMS 
 

1. An atomic term is a variable or a constant. 
 

2. A term is either an atomic term or any string of symbols that can be built up from atomic 
terms in a sequence of finitely many stepscalled a formation sequenceby applying the 
rule: If f is an n-place function symbol and t1, t2, ..., tn are terms, then f(t1, ..., tn) is a term. 
 

3. A closed term is a term that contains no variable, and an open term is a term that contains at 
least one variable. 
 

III. FORMULAS  
 

1. An atomic formula is a string of symbols (e.g., ‘R(t1, ..., tn)’) consisting of an n-place 
predicate (including the identity symbol), followed by ‘(’, followed by n terms separated by 
commas, followed by ‘)’. 
 

2. A formula is either an atomic formula or any string of symbols that can be built up from 
atomic formulas in a sequence of finitely many stepscalled a formation sequenceby 
applying the rules: (a) If F is a formula, its negation ~F is also a formula. (b) If F and G are 
formulas, their conjunction (F & G) is also a formula, and so is their disjunction (F ∨ G). (c) 
If F is a formula and x is a variable, the universal quantification ∀xF and the existential 
quantification ∃xF are formulas. (F is the scope of ∀ or of ∃.) 
 

3. A subformula of a given formula is any string of consecutive symbols within the given 
formula which is itself a formula. (Similarly for subterm.) 
 

4. An occurrence of a variable x in a formula is bound exactly if it is part of a subformula 
beginning with ‘∀x’ or ‘∃x’; otherwise, the occurrence of the variable is free in the formula. 
 

5. An instance of a formula F(x) [in which x is the only free variable (i.e., the only variable 
having at least one free occurrence)] is any formula of the form F(t) [in which t is substituted 
for all free occurrences of x in F] for t a closed term. 
 



 
6. A sentence is a formula in which there is no free (occurrence of any) variable. A subsen-
tence of a given sentence is any subformula of the given sentence which is itself a sentence. 
 

IV. OFFICIAL AND UNOFFICIAL NOTATION 
 

Official notation   Unofficial notation 
 

<(x, y)     x<y 
 

(F & G)    F & G 
 

(F & (G & H))    F & G & H 
 

(~F ∨ G)    F → G 
 

((~F ∨ G) & (~G ∨ F))  F ↔ G 
 

=(x, y)     x=y 
 

~=(x, y)    x≠y 
 

′(x)     x′ 
 

+(x, y)     x+y 
 

•(x, y)     x•y 
 

+(x, •(y, z))    x+y•z 
 

′(0)     0′ or 1 
 

′(′(0))     0′′ or 2 
 

P(a)     Pa 
 

P(x, y)     Pxy 
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SEMANTICS FOR FIRST-ORDER LOGIC 
 

I. INTERPRETATIONS (OF LANGUAGES) 
 

1. Informally, an interpretation of a language is a way of specifying which propositions the 
sentences of the language express. 
 

2. Formally, an interpretation M  for (or of) a language L is an ordered pair <|M|, f>, where: 
 

(a) |M| is a nonempty set, the domain or universe of discourse of the interpretation (the set 
of things the interpretation takes the language to be about). 

 

(b) f is a function assigning to each member (i.e., nonlogical symbol) of L a denotation as 
follows: 

 

(i) The denotation of a constant is a member of the domain. 
 

(ii) The denotation of a one-place predicate is a subset of the domain. 
 

(iii) The denotation of an n-place predicate is an n-place relation on the domain (i.e., a 
set of ordered n-tuples of members of the domain). 

 

(iv) The denotation of an n-place function symbol is a total n-argument function on the 
domain. 

 

[(v) The denotation of the identity symbol is the relation of identity on the domain.] 
 

II. TRUTH OF A SENTENCE IN AN INTERPRETATION 
 

Notation: ‘M ╞ S’ abbreviates ‘S is true in (or on or under) interpretation M ’. (S must be a 
sentence.) 
 

0. The denotation of a closed term f(t1, ..., tn) is the value of the function that f denotes when 
the arguments are what t1, ..., tn denote. 
 

1. M ╞ R(t1, ..., tn) exactly if the relation that R denotes holds between the individuals denoted 
by t1, ..., tn. 
 

2. M ╞ ~F exactly if it is not the case that M ╞ F. 
 

3. M ╞ (F & G) exactly if both M ╞ F and M ╞ G. 
 

4. M ╞ (F ∨ G) exactly if either M ╞ F or M ╞ G (or both). 
 

5. M ╞ =(t1, t2) exactly if t1 and t2 denote the same member of the domain. 
 

6. M ╞ ∀xF(x) exactly if every member of the domain satisfies F(x). 
 

7. M ╞ ∃xF(x) exactly if at least one member of the domain satisfies F(x). 
 

8. If M ╞ F, then M ╞ ∀xF and M ╞ ∃xF for any variable x. 
 

A member m of the domain satisfies F(x) (abbreviation: M ╞ F[m]) exactly if F(t) is true for 
some term t denoting m, or, if no such term exists, when one extends the language by adding a 
new constant c and one extends the interpretation by letting c denote m, in that extended 
interpretation F(c) is true. (One may need to thus extend the language on a case-by-case basis 
because the domain may be nonenumerable but a language is enumerable and thus may not 
have enough terms to denote every member of the domain.) 
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SEMANTIC METALOGICAL NOTIONS 
 

I. OBJECT LANGUAGES VERSUS METALANGUAGES 
 

1. An object language is any (formal) language as already defined: an enumerable set of 
nonlogical symbols. 
 

2. A metalanguage for an object language is a language used to talk about the object lan-
guage. A metalanguage for an object language usually (but not always) differs from the object 
language. A metalanguage can be a formal language but is usually a natural language. 
 

II. IMPLICATION, VALIDITY, AND (UN)SATISFIABILITY 
 

1. A set of sentences Γ implies or has as a consequence a sentence D exactly if every interpre-
tation (of a language in which both D and every member of Γ are sentences) that makes every 
sentence in Γ true makes D true (equivalently: no interpretation makes true both ~D and every 
sentence in Γ). 
 

2. A sentence D is valid exactly if it is true in every interpretation (equivalently: it is false in 
no interpretation). 
 

3. A set of sentences Γ is unsatisfiable exactly if no interpretation makes (every sentence in) Γ 
true, and is satisfiable otherwise (i.e., exactly if some interpretation makes Γ true). 
 

4. Proposition: D is valid exactly if every Γ implies D, and Γ is unsatisfiable exactly if Γ im-
plies every D. 
 

III. EQUIVALENCE 
 

1. Two sentences are equivalent over a given interpretation exactly if they have the same 
truth value in that interpretation. 
 

2. Two sentences are (logically) equivalent exactly if they are equivalent over all interpreta-
tions. 
 

3. Two formulas F(x) and G(x) are equivalent over a given interpretation exactly if, for any 
constant c occurring in neither formula, the sentences F(c) and G(c) are equivalent over every 
interpretation that extends the given interpretation by providing some denotation for c. 
 

4. Two formulas F(x) and G(x) are (logically) equivalent exactly if, for any constant c occur-
ring in neither formula, the sentences F(c) and G(c) are logically equivalent. Equivalently: 
two formulas are (logically) equivalent exactly if they are equivalent over all interpretations. 
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SYNTACTIC METALOGICAL NOTIONS 
 

I. A UNIFICATION OF SEMANTIC METALOGICAL NOTIONS 
 

1. A set of sentences Γ secures a set of sentences Δ exactly if every interpretation that makes 
all sentences in Γ true makes at least one sentence in Δ true. 
 

2. Proposition: (a) Γ implies D exactly if Γ secures {D}. 
   (b) Γ is unsatisfiable exactly if Γ secures ∅. 
   (c) D is valid exactly if ∅ secures {D}. 
 

II. THE CONCEPT OF A DERIVATION 
 

1. A sequent Γ ⇒ Δ consists of a finite set of sentences Γ on the left, the symbol ‘⇒’ in the 
middle, and a finite set of sentences Δ on the right. 
 

2. Γ ⇒ Δ is secure exactly if Γ secures Δ. 
 

3. A derivation [of a sequent Γ ⇒ Δ] is a finite sequence of sequents (called the steps or lines 
of the derivation) such that [the last step is Γ ⇒ Δ and] each step is of the form {A} ⇒ {A} or 
follows from earlier steps according to one of several rules of inference permitting passage 
from zero or more sequents taken as premises to a sequent taken as conclusion. 
 

4. A sequent is derivable exactly if there is some derivation of it. A set of sentences Δ is 
derivable from a set of sentences Γ exactly if, for some finite subsets Γ0 and Δ0 of Γ and Δ 
respectively, Γ0 ⇒ Δ0 is derivable. 
 

5. A proof procedure is a nonempty set of rules of inference. 
 

III. SYNTACTIC METALOGICAL NOTIONS 
 

1. A deduction of D from Γ is a derivation of  Γ ⇒ {D}. 
    D is deducible from Γ exactly if there is a deduction of D from a finite subset of Γ. 
 

2. A refutation of Γ is a derivation of  Γ ⇒ ∅. 
    Γ is refutable exactly if there is a refutation of a finite subset of Γ. 
 

3. A demonstration of D is a derivation of  ∅ ⇒ {D}. 
    D is demonstrable exactly if there is a demonstration of D. 
 

IV. SYNTACTIC/SEMANTIC EQUIVALENCES 
 

1. A proof procedure is sound exactly if every derivable sequent is secure. 
 

2. A proof procedure is complete exactly if every secure sequent is derivable. 
 

3. If a proof procedure is both sound and complete then: 
 
 Syntactic notions        Semantic notions 
 

 D is deducible from Γ    exactly if D is a consequence of Γ. 
 

 Γ is inconsistent (i.e., refutable) exactly if Γ is unsatisfiable. 
 

 D is demonstrable    exactly if D is valid. 
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THE COMPACTNESS THEOREM 
 

I. THREE EQUIVALENT FORMS OF THE THEOREM 
 

Definition: A model of a set of sentences is an interpretation in which every sentence in the 
set is true. (Note: Every set of sentences of a given language is enumerable because every 
language is enumerable.) 
 

1. The compactness theorem: If every finite subset of a set of sentences is satisfiable (i.e., has 
a model), then the whole set of sentences is satisfiable (i.e., has a model). 
 

2. Contrapositive form: If a set of sentences is unsatisfiable (i.e., has no model), then some 
finite subset of the set is unsatisfiable (i.e., has no model). 
 

3. Equivalent form: If Γ╞ S (i.e., Γ implies S) then for some finite Γ0 ⊆ Γ we have Γ0╞ S. 
 

Importance: One never needs to look for argument forms with infinitely many premises. 
 

II. AN APPLICATION 
 

Show that a denumerable map can be colored with four colors if every finite submap of it can 
be. 
 
 

THE LÖWENHEIM-SKOLEM THEOREMS 
 

I. THE THEOREMS 
 

1. (First) Löwenheim-Skolem theorem: If a set of sentences is satisfiable (i.e., has a model), 
then it has an enumerable (i.e., finite or denumerable) model. 
 

2. Corollary (Canonical domains theorem): If a set of sentences is satisfiable, then it has a 
model whose domain is N or {0, 1, 2, …, n} for some n∈N. 
 

3. Second Löwenheim-Skolem theorem: A set of sentences has a denumerable (i.e., countably 
infinite) model if and only if it has a nonenumerable (i.e., uncountably infinite) model. 
 

II. THREE APPLICATIONS 
 

1. The overspill principle: If a set of sentences has arbitrarily large finite models (i.e., for any 
n∈N, the set has a model of size m ≥ n, with m∈N), then it has a denumerable (i.e., infinitely 
enumerable) model. 
 

2. The Skolem paradox. Let ZFC be the set of axioms of standard set theory. From the axioms 
it follows that there are nonenumerably many sets of natural numbers. If ZFC is consistent it 
has a model, so by the Löwenheim-Skolem theorem it has an enumerable model. So the 
sentence that in the standard interpretation expresses the proposition that there are 
nonenumerably many sets of natural numbers has an enumerable model. 
 

3. Limitations of first-order logic: Unformalizable quantifiers. There is no first-order 
translation of the quantifier “There are at most finitely many things such that…”. 
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GÖDEL’S FIRST INCOMPLETENESS THEOREM: 
FORMULATION 

 

I. INFORMAL FORMULATION 
 

- First Incompleteness Theorem (Gödel/Rosser): If a formal system T is (1) consistent, (2) 
axiomatizable, and (3) sufficiently powerful, then T is incomplete: some sentence of the language 
of T is neither provable nor refutable in T. 
 

- Importance: When doing math, one normally assumes that every statement (conjecture) is ei-
ther provable or refutable. FIT has the consequence that one may no longer assume that. 
 

II. CLARIFICATION OF CONCEPTS 
 

0. Formal system. A formal system is a theory, defined as a set of sentences that contains every 
sentence of its language provable from the set; i.e., a set of sentences closed under provability.    
-If T is a theory, then S∈T iff T├ S (i.e., S is provable from T). -The sentences which are prova-
ble from Γ are the theorems of Γ, so the theorems of a theory T are all and only the sentences of 
T. -We presuppose a sound and complete proof procedure, but we don’t presuppose that some 
sentences of T are singled out as “axioms”. 
 

1. Consistency. A theory T is consistent iff ∅ is not derivable from T; equivalently, iff there is no 
S such that T contains both S and ~S; equivalently, iff some sentence of its language is not in T. 
 

2. Axiomatizability. A theory T is decidable iff there is an “effective procedure” (i.e., a mechani-
cal procedure involving no randomness and terminating after finitely many steps) for determin-
ing, for every sentence, whether or not it is in T. -A theory is (finitely) axiomatizable iff there is a 
(finite) decidable set of sentences Γ such that T contains all and only those sentences of its lan-
guage that are provable from Γ. -A decidable theory is axiomatizable, but not vice versa. -FIT is 
equivalent to: if a theory is consistent, decidable, and sufficiently powerful, it is incomplete. 
 

3. “Sufficiently powerful”. A theory is sufficiently powerful if it is an extension of (i.e., it is a 
theory—not necessarily of the language of PA—that is a superset of) “Peano Arithmetic” (PA), 
namely the axiomatizable theory whose axioms are: (1) ∀x~(Sx = 0), (2) ∀x((x + 0) = x), etc. 
 

4. (In)completeness. A theory T is complete iff, for every sentence S (of its language), S∈T or 
~S∈T; i.e., T├ S or T├ ~S. A theory is incomplete iff it is not complete; i.e., iff, for some sen-
tence S, S∉T and ~S∉T; in other words, iff some sentence S is undecidable in (or by or for) T. 
 

III. RIGOROUS FORMULATION 
 

(FIT) If a theory is (1) consistent, (2) axiomatizable, and (3) an extension of PA, then it is in-
complete. I.e.: There is no consistent, axiomatizable, and complete extension of PA. 
 

IV. WHAT THE THEOREM DOES AND DOES NOT IMPLY 
 

1. Completeness and incompleteness are syntactic notions. But in every interpretation S is true or 
~S is true, so FIT has the consequence that, for any interpretation of a consistent and 
axiomatizable extension T of PA, some sentence is true in the interpretation but unprovable in T. 
 

2. It does not follow that some sentence is true in the given interpretation but unprovable 
simpliciter. If G is unprovable in T, G is provable in any extension T΄ of T that contains G. Of 
course then FIT, applied to Τ΄, has the consequence that some sentence G΄ is true in the given 
interpretation but unprovable in T΄. G΄ is also unprovable in T. So FIT implies that there are infi-
nitely many sentences which are true in the given interpretation but are unprovable in T. 
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GÖDEL’S FIRST INCOMPLETENESS THEOREM: 
PROOF STRATEGY 

 

I. HOW NOT TO PROVE GÖDEL’S FIRST THEOREM 
 

1. Show that there is a sentence GT such that: 
 (1) GT ↔ (GT is unprovable in T).  Informally, GT is: ‘This sentence is unprovable in T’. So: 
 (2) ~GT ↔ (GT is provable in T). 
 

2. “Proof”’ that GT is unprovable in T: Suppose, for reductio, that GT is provable in T and is 
thus true (in the standard interpretation N* of the language of arithmetic), since provability in 
T guarantees truth. But, by (2), ~GT is true—contradiction. 
 

3. “Proof”’ that ~GT is unprovable in T: Suppose, for reductio, that ~GT is provable in T and 
is thus true (in N*), since provability in T guarantees truth. Then, by (2), GT is provable in T 
and is thus true—contradiction. 
 

4. Problems with these “proofs”: (a) We have not used the assumptions that T is consistent, 
axiomatizable, and an extension of PA. (b) Why assume that _________________________? 
This assumption amounts to the claim that every member of T is true (in N*). 
 

II. HOW TO PROVE GÖDEL’S FIRST THEOREM 
 

1. Show that there is a sentence GT such that: 
 (1) T├ (GT ↔ (GT is unprovable in T)). So: 
 (2) T├ (~GT ↔ (GT is provable in T)). 
 

2. Proof that GT is unprovable in T. 
Suppose, for reductio, that GT is provable in T. Then it is provable in T that GT is provable in 
T (if I can prove something, then I can prove that I can prove it): 
 (3) T├ (GT is provable in T). 
From (2) and (3) we get: T├ ~GT; i.e., ~GT is provable in T. But then both GT and ~GT are 
provable in T, contradicting the assumption that T is consistent. 
 

3. “Proof”’ that ~GT is unprovable in T. 
Suppose, for reductio, that ~GT is provable in T: T├ ~GT. This, together with (2), gives (3): 
T├ (GT is provable in T). But we have shown above that GT is not provable in T, so: 
 (4) T├ (GT is unprovable in T). 
(3) and (4) contradict the assumption that T is consistent. 
- There is a problem with step (4). We need an assumption stronger than consistency, namely 
ω-consistency, to conclude that ~GT is unprovable in T. 
 

III. HOW TO EXPRESS “GT IS UNPROVABLE IN T” 
 

1. Number all sentences so that no two sentences have the same (Gödel) number. 
 

2. Then “GT is unprovable in T” is equivalent to “the Gödel number of GT is not the Gödel 
number of a sentence provable in T”. 
 

3. Find a formula P(x) meaning (in N*) “x is the Gödel number of a sentence provable in T” 
(just as F(x) = ‘∃y(x = y+y)’ means (in N*) “x is even”). Then “GT is unprovable in T” is 
equivalent to ~P(┌GT

┐), where ┌GT
┐ is the numeral of the Gödel number of GT. 

 

4. So we want: T├ (GT ↔ ~P(┌GT
┐)). Three tasks: (1) number sentences, (2) find formula 

P(x), (3) show that there is a sentence GT such that T├ (GT ↔ ~P(┌GT
┐)). 
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GÖDEL NUMBERING 
 

The idea: Every person has a Social Security number. This number is arbitrary: any other 
number could do. The number uniquely characterizes the person: no two persons have the 
same Social Security number. Not every number is a Social Security number. Think of Gödel 
numbers as the Social Security numbers of symbols, expressions, and proofs. 
 

I. GÖDEL NUMBERS OF SYMBOLS 
 

We will follow George and Velleman’s system: 
 

Symbol & ∨ ~ → ↔ ∀ ∃ ( ) = 0 S < + • x1 x2 … 
Gödel number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 

 

This table allows one to associate a sequence of numbers to any expression. E.g.: 
 

  ∃  x1   (   x1  =   S    0   ) 
  ↓   ↓   ↓   ↓   ↓   ↓    ↓   ↓ 
<6, 15, 7, 15, 9, 11, 10, 8> 
 

II. CODE NUMBERS OF SEQUENCES OF NATURAL NUMBERS 
 

1. The code number of a finite sequence <a1, …, ak> of natural numbers is defined as: 
#<a1, …, ak> = p1

a1+1•p2
a2+1•…•pk

ak+1, where pn is the nth prime number (p1 = 2, p2 = 3, p3 = 5, 
p4 = 7, p5 = 11, …). E.g.: #<2, 5, 0> = 22+1•35+1•50+1 = 8•729•5 = 29,160. 
 

2. Because of the fundamental theorem of arithmetic (i.e., every positive integer greater than 1 
can be written as a product of prime numbers in a unique way), no two sequences of natural 
numbers have the same code number. 
 

III. GÖDEL NUMBERS OF EXPRESSIONS 
 

1. The Gödel number of an expression is the code number of the sequence of the Gödel num-
bers of the symbols in the expression. E.g.: 
 

  (    0   <    S     0     )  Expression (i.e., finite sequence of symbols) 
  ↓   ↓    ↓    ↓     ↓    ↓ 
<7, 10, 12, 11, 10,  8>  Sequence of Gödel numbers of the symbols in the expression 
  ↓   ↓    ↓    ↓     ↓    ↓ 
 28•311•513•712•1111•139 Code number of the sequence = Gödel number of the expression 
 

2. Notation: #P is the Gödel number of the expression P. 
 

3. Distinguish the Gödel number of the symbol ‘x1’, namely 15, from the Gödel number of the 
expression ‘x1’, namely 216. 
 

4. The number 28 (i.e., 256) is the Gödel number of the expression ‘(’ but also of the symbol 
‘x242’. 
 

IV. GÖDEL NUMBERS OF PROOFS 
 

Every proof is a finite sequence of sentences: <S1, …, Sn>. Its Gödel number is the code num-
ber of the sequence <#S1, ..., #Sn>. 
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REPRESENTABILITY AND DECIDABILITY 
 
I. THE GOAL 
 

In order to express, in the language of T, “Q is provable in T”, find a formula TheoremT(x1) 
such that, if n is the Gödel number of a sentence Q provable in T, then PA├ TheoremT(Sn0). 
 
II. INTERMEDIATE STEP 
 

Let TheoremT(x1) be the formula ∃x2ProofT(x1, x2), where ProofT(x1, x2) is a formula such that 
if n is the Gödel number of a sentence and m is the Gödel number of a proof of that sentence 
in T, then PA├ ProofT(Sn0, Sm0), and if not, then PA├ ~Proof T(Sn0, Sm0). In other words, the 
formula ProofT(x1, x2) represents the set {<n, m> ∈ N2: n is the Gödel number of a sentence 
and m is the Gödel number of a proof of that sentence in T}. 
 
III. REPRESENTABILITY 
 

1. Definition: For any positive integer k, let Nk be the set of all sequences of natural numbers 
of length k. We will use the notation <a1, a2, …, ak> to denote an element of Nk. A set A ⊆ Nk 
is called representable exactly if there is a formula P(x1, x2, …, xk) such that, for every se-
quence <a1, a2, …, ak> ∈ Nk: 
   (i) if <a1, a2, …,ak> ∈ A, then PA├ P(Sa10, Sa20, …, Sak0); and 
   (ii) if <a1, a2, …,ak> ∉ A, then PA├ ~P(Sa10, Sa20, …, Sak0). 
In this case, we say that the formula P represents the set A. 
 

2. Theorem: If a set A ⊆ Nk is decidable, then it is representable (and vice versa). (Such a set 
A is decidable exactly if there is an effective procedure for determining, for each sequence, 
whether or not it is in the set.) 
 
IV. HOW TO REACH THE GOAL 
 

1. The set {<n, m> ∈ N2: n is the Gödel number of a sentence and m is the Gödel number of a 
proof of that sentence in T} is decidable (if T is axiomatizable), so by the above theorem it is 
representable, so there is such a formula as ProofT(x1, x2). 
 

2. If Q∈T and n is the Gödel number of Q, then there is a proof of Q in T; let m be the Gödel 
number of that proof. Then PA├ Proof T(Sn0, Sm0), but ProofT(Sn0, Sm0) has ∃x2ProofT(Sn0, x2) 
as a consequence, so by the closure of PA under provability we get PA├ ∃x2ProofT(Sn0, x2); 
i.e., PA├ TheoremT(Sn0), which is what we wanted. 
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THE FIXED POINT LEMMA 
AND THE LAST STAGE OF THE PROOF 

 

I. REVIEW 
 

We found a formula TheoremT(x1) such that, if n is the Gödel number of a sentence provable 
in (i.e., a theorem of) an axiomatizable extension T of PA, then PA├ TheoremT(Sn0). So: 

(1) If T├ Q, then PA├ TheoremT(┌Q┐), 
where ┌Q┐ is the numeral of the Gödel number of the sentence Q. 
 

II. THE FIXED POINT LEMMA (DIAGONAL LEMMA) 
 

For any formula P(x1) in the language of PA, there is a sentence Q such that: 
PA├ (Q ↔ P(┌Q┐)). 

Informally: Q is provably equivalent to a statement about its own Gödel number. 
 

III. THE LAST STAGE OF THE PROOF 
 

1. Apply the Fixed Point Lemma to P(x1) = ‘~TheoremT(x1)’. 
We get: There is a sentence GT (a “Gödel sentence” of T) such that: 

(2) PA├ (GT ↔ ~TheoremT(┌GT
┐)). 

That’s what we wanted. Now let’s repeat the reasoning given in “Proof Strategy”. 
 

2. Proof that GT is unprovable in T. 
Suppose, for reductio, T├ GT. From (1), PA├ Theorem T(┌GT

┐). From (2), PA├ (Theo -
remT(┌GT

┐) → ~GT). Given the closure of PA under provability, PA├ ~GT, so T├ ~GT, so T is 
inconsistentcontradiction. 
 

3. Proof that ~GT is unprovable in T. 
Suppose, for reductio, T├ ~GT. From (2), PA├ (~ GT → TheoremT(┌GT

┐)), so T├ (~GT → 
TheoremT(┌GT

┐)). Given the closure of T under provability, T├ TheoremT(┌GT
┐), so T├ 

∃x2ProofT(┌GT
┐, x2). But since T├ ~GT and T is consistent, we don’t have T├ GT, so for all 

natural numbers m, PA├ ~Proof(┌GT
┐, Sm0), and so T├ ~Proof(┌GT

┐, Sm0). This is not an out-
right inconsistency, but still it’s a kind of inconsistency. 
 

Definition: An extension T of PA is ω-inconsistent iff there is a formula P(x1) such that: 
(a) T├ ∃x1P(x1) and (b) for every natural number m, T├ ~P(Sm0). 
 

Remark: ω-consistency guarantees consistency. 
 

So we have shown: If T├ ~GT and T is consistent, then T is ω-inconsistent. 
So: If T is (consistent and) ω-consistent, then we don’t have T├ ~GT. 
 

4. Conclusion: Gödel’s First Incompleteness Theorem. 
If a theory T is an axiomatizable extension of PA, then there is a sentence GT (a Gödel sen-
tence of T, defined as any sentence which satisfies (2)) such that: 
(i) if T is consistent, then GT∉T and (ii) if T is ω-consistent, then ~GT∉T. 
 

IV. ROSSER’S INCOMPLETENESS THEOREM 
 

If a theory T is an axiomatizable, consistent extension of PA, then there is a sentence RT (a 
Rosser sentence of T) such that: RT∉T and ~RT∉T. 
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GÖDEL’S FIRST INCOMPLETENESS THEOREM: 
CONSEQUENCES 

 
I. TRUTH DOES NOT GUARANTEE PROVABILITY 
 

More precisely: If T is a consistent, axiomatizable extension of PA, then even if every sen-
tence provable in T is true (in N*), not every true (in N*) sentence is provable in T. Indeed: 
If every sentence provable in T is true, then (GT ↔ ~TheoremT(┌GT

┐)) is true; but 
~TheoremT(┌GT

┐) is true (since GT∉T), so GT is true but unprovable in T. 
 
II. NONSTANDARD MODELS OF PA 
 

1. A nonstandard model of PA is a model of PA in which some sentence is false although the 
sentence is true in the standard model N* of PA. 
 

2. By the Gödel completeness theorem, every consequence of PA is deducible from PA. Since 
GPA is not deducible from PA, GPA is not a consequence of PA: there is a model M of PA in 
which GPA is false. If GPA is true in N*, M  is a nonstandard model of PA. 
 

3. The incompleteness of PA follows from the existence of a nonstandard model of PA: every 
sentence which is assigned different truth values by the standard and a nonstandard model of 
PA is undecidable in PA. 
 
III. UNDECIDABILITY/NON-AXIOMATIZABILITY OF ARITHMETIC 
 

Let arithmetic be the set T of all true (in N*) sentences of the language of PA. T is a theory 
(since every sentence provable from true sentences is true, so T is closed under provability) 
and is consistent (since it has a model, namely N*) and complete (since, for every sentence S, 
either S or ~S is true in N*, so either S or ~S is in T). Moreover, if PA is true, then every 
member of PA is in T, so T is an extension of PA. But by FIT there is no consistent, complete, 
and decidable (or axiomatizable) extension of PA, so T is undecidable and non-axiomatizable. 
 
IV. UNDEFINABILITY OF TRUTH 
 

Theorem (Tarski): There is no formula P(x1) such that, for every natural number n, P(Sn0) is 
true in N* if and only if n is the Gödel number of a sentence true in N*. 
 

Proof: Suppose, for reductio, that there is such a formula P(x1). By the Fixed Point Lemma, 
there is a sentence Q such that Q ↔ ~P(┌Q┐). By the reductio assumption, Q ↔ P(┌Q┐). Con-
tradiction. 
 
V. NON-REPRESENTABILITY OF THEOREMHOOD 
 

Theorem: If T is a consistent extension of PA, then the set {n∈N: n is the Gödel number of a 
theorem of T} is not representable. 
 

Proof: Suppose, for reductio, that the formula P(x1) represents the above set. By the Fixed 
Point Lemma, there is a sentence Q such that PA├ (Q ↔ ~P(┌Q┐)). If Q∈T, then PA├ 
P(┌Q┐), so PA├ ~Q, contradicting the consistency of T. If Q∉T, then PA├ ~P(┌Q┐), so PA├ 
Q, contradicting again the consistency of T. 
 

Lemma (Essential undecidability theorem): No consistent extension of PA is decidable. 
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GÖDEL’S SECOND INCOMPLETENESS THEOREM: 

FORMULATION 
 

I. INFORMAL FORMULATION 
 

Second Incompleteness Theorem (Gödel): If a formal system T is (1) consistent, (2) 
axiomatizable, and (3) sufficiently powerful, then the consistency of T is unprovable in T. 
 

II. CLARIFICATIONS 
 

0. Formal system: A theory. 
 

1. Consistency: Needed because an inconsistent theory contains every sentence of its lan-
guagei.e., it can prove everything, including the false (in N*) sentence that T is consistent. 
 

2. Axiomatizability: Needed because for example arithmetic, namely the theory consisting of 
all and only the true (in N*) sentences, is (as we have seen) consistent and—assuming PA is 
true—sufficiently powerful (though non-axiomatizable), so a sentence expressing the claim 
that this theory is consistent is true (in N*), so such a sentence by definition is (provable) in 
the theory. 
 

3. “Sufficiently powerful” (e.g., an extension of PA): Needed because there are weak (con-
sistent and axiomatizable) theories that do prove their own consistency. 
 

III. EXPRESSING THE CLAIM THAT T IS CONSISTENT 
 

0. ‘T is consistent’ is not a sentence of PA. 
 

1. First way: T is consistent exactly if there is no sentence Q (of PA) such that both Q and ~Q 
are provable in T. I.e., ~∃Q(TheoremT(┌Q┐) & TheoremT(┌~Q┐)). Unfortunately, this quanti-
fies over sentences, so it is not a sentence of PA. Remedy: ~∃x1∃x2(TheoremT(x1) & 
TheoremT(x2) & Neg(x1, x2)), where Neg(x1, x2) means (in N*) “x1 is the Gödel number of a 
sentence and x2 is the Gödel number of the negation of that sentence”. 
 

2. Second way: An extension T of PA is consistent exactly if it does not contain the sentence 
‘0=1’: ~TheoremT(┌‘0=1’┐). Much simpler. 
 

3. Choose one of the above two sentences and call it “the consistency sentence of T”, ConT. 
 

IV. RIGOROUS FORMULATION 
 

If a theory is (1) consistent, (2) axiomatizable, and (3) an extension of PA, then it does not 
contain its consistency sentence. 
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GÖDEL’S SECOND INCOMPLETENESS THEOREM: 
PROOF STRATEGY 

 
I. THE PROOF 
 

Suppose, for reductio, that T is a consistent, axiomatizable extension of PA and that T├ ConT. 
Lemma: PA├ (ConT → GT), GT being a Gödel sentence of T. But then, since T is an extension 
of PA, T├ (ConT → GT), and by the closure of T under provability T├ GT, contradicting the 
proof of the First Incompleteness Theorem (where we saw that GT∉T). 
 
II. THE LEMMA 
 

1. We saw in the discussion of the First Incompleteness Theorem that if T is consistent, then 
GT is true (in N*). We can translate this reasoning into the language of PA. The result is a 
proof in PA of ConT → GT. 
 

2. The converse also holds: PA├ ( GT → ConT). Indeed: GT is equivalent in PA to “GT is un-
provable in T”, from which it follows that T is consistent, since there is a sentence it cannot 
prove. 
 

3. So PA├ (Con T ↔ GT): Any Gödel sentence of T is equivalent in PA (and thus in T) to the 
consistency sentence of T. 
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COMPUTABILITY 

 
I. FOUR KINDS OF COMPUTABILITY 
 

0. Effective computability: A function f from natural numbers to natural numbers is effectively 
computable exactly if there is a finitely terminating deterministic algorithm which, when giv-
en as input a numeral for any given natural number n, gives as output a numeral for the corre-
sponding value f(n) of the function. (This is an intuitive notion, not a rigorous one. It is easily 
generalizable to many-place functions. It is related to the notion of decidability: A set of natu-
ral numbers is (effectively) decidable exactly if its characteristic functionnamely the func-
tion that takes the value 1 for every natural number in the set and the value 0 for every natural 
number not in the setis effectively computable.) 
 

1. Turing computability: A function f from natural numbers to natural numbers is Turing 
computable exactly if there is a Turing machine which, when it is presented with a tape which 
contains an unbroken block of n+1 strokes (and is otherwise blank) and starts scanning at the 
leftmost square containing a stroke, halts at the leftmost square containing a stroke of a tape 
which contains an unbroken block of f(n)+1 strokes (and is otherwise blank), for any natural 
number n. 
 

2. Abacus computability: A function f from natural numbers to natural numbers is abacus 
computable exactly if there is an abacus machine which, when it starts with n stones in the 
first box and no stone in all other boxes, halts with f(n) stones in some pre-specified box, for 
any natural number n. 
 

3. Recursive computability: A function f from natural numbers to natural numbers is recur-
sively computable (or recursive) exactly if it is obtainable from the basic functionsnamely 
the zero, successor, and identity functionsby composition, (primitive) recursion, and mini-
mization. 
 
II. RELATIONSHIPS BETWEEN THE FOUR KINDS 
 

1. Obviously, every Turing computable or abacus computable or recursively computable func-
tion is effectively computable. 
 

2. Turing’s thesis: Every effectively computable function is Turing computable. 
 

3. Church’s thesis: Every effectively computable function is recursively computable. 
 

4. Fundamental computability theorem: Turing computability, abacus computability, and re-
cursive computability are equivalent to each other. 
 

5. Corollary: Turing’s thesis and Church’s thesis are equivalent. So there is strong evidence 
for both theses. 
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HILBERT’S PROGRAM 

 

I. BACKGROUND: CLASSICAL MATHEMATICS VS. INTUITIONISM 
 

1. Classical mathematics is based on the realist assumption that mathematical reality is fully 
determinate: every intelligible question that can be asked about it has an answer. In the case of 
questions concerning mathematical propositions that involve unbounded quantification (such 
as the twin prime conjecture: ∀x∃y((x<y) & (y is prime) & (y+2 is prime))), the answer de-
pends on the features of completed infinities. 
 

2. Intuitionism denies that mathematical reality is fully determinate and that completed (as 
opposed to potential) infinities exist. It claims that some concepts are indefinitely extensible: 
their extensions cannot be fully determined, because any collection of objects that fall under 
such a concept can be extended. Intuitionists understand propositions such as the twin prime 
conjecture as being about the entities that could in principle be generated by some operation. 
 

3. Classical mathematicians and intuitionists agree that mathematical reality exists and that 
infinitary mathematical sentences (i.e., mathematical sentences with unbounded quantifica-
tion) are intelligible, but disagree (1) on a theoretical level, about the nature of mathematical 
reality and about the proper understanding of infinitary mathematical sentences, and (2) on a 
practical level, about the acceptability of certain forms of inference and thus about whether 
one is justified in believing certain infinitary mathematical propositions. In particular, intui-
tionists reject the Law of Double Negation Elimination (and thus certain proofs by reductio) 
and the Law of the Excluded Middle. 
 

II. THE GOALS OF HILBERT’S PROGRAM 
 

1. A first main goal of Hilbert’s program was to justify (some of) the infinitary mathematical 
assertions (and thus, derivatively and instrumentally, the reasoning) of classical mathemati-
cians from a perspective acceptable to intuitionists. This would reconcile classical mathemati-
cians and intuitionists with respect to their practical disagreements, though not with respect to 
their theoretical ones. 
 

2. A second main goal of Hilbert’s program was to establish, from a perspective acceptable 
both to classical mathematicians and to intuitionists, the consistency of an axiomatic theory of 
mathematics. 
 

3. The second goal will be seen to help achieve the first, but is also independently motivated 
by a desire to eliminate the epistemic possibility that new paradoxes will arise. 
 

III. FINITARY SENTENCES AND FINITARY JUSTIFIABILITY 
 

1. Finitary sentences are of three basic kinds: (i) non-quantified (mathematical) sentences, (ii) 
bounded existentially or universally quantified sentences, and (iii) unbounded universally 
quantified sentences (containing no unbounded existential quantifiers). (Any combinations of 
these three are also finitary.) According to finitism, unbounded existentially quantified sen-
tences are meaningless. Note that some sentences (e.g., of kind (iii) above) are both finitary 
and infinitary. 
 

2. A sentence is finitarily justifiable exactly if it is finitary and its correctness can be estab-
lished either by means of a finite calculation or, if the sentence is of the form ∀xP(x), by 



 

  

means of an algorithm which, for every numeral k, establishes the correctness of P(k) (either 
by means of a finite calculation or, if P(k) is of the form ∀yQ(y), by means of an algo-
rithm…). 
 

3. Finitarily justifiable sentences are acceptable (as justified) to both classical mathematicians 
and intuitionists, but not every sentence acceptable to classical mathematicians or to intuition-
ists is finitarily justifiable. 
 

IV. FINITARILY JUSTIFYING CONSISTENCY 
 

1. Consider an axiomatizable theory T which includes all sentences acceptable to classical 
mathematicians (including infinitary sentences). The proposition that T is consistent can be 
expressed by the following finitary sentence (the consistency sentence of T): every (syntacti-
cally defined) derivation in T has a last line different from “0=1 & 0≠1”. Hilbert’s goal is to 
finitarily justify the consistency sentence of T. 
 

2. Establishing this goal would not address the primary epistemological worry of intuitionists 
about classical mathematics, so the other main goal of Hilbert’s program is also needed. 
 

V. FINITARILY JUSTIFYING (SOME) CLASSICAL MATHEMATICS 
 

1. The goal is to establish: 
(2) Every finitary sentence provable in T is finitarily justifiable. 

(In other words, T is a conservative extension of finitary mathematics with respect to finitary 
sentences.) This would finitarily justify not the whole of classical mathematics, but rather the 
part consisting of finitary sentences (which includes infinitary sentences with universal quan-
tifiers but not with existential quantifiers). 
 

2. Achieving this goal would also instrumentally justify the rules of inference used by classi-
cal mathematicians (including the rules that are unacceptable to intuitionists): these rules 
would be dispensable but convenient shorthands, never leading to finitarily unjustifiable 
finitary sentences. 
 

3. The goal can be established by using two premises: 
(0) The consistency sentence of T is finitarily justifiable. 
(1) Every finitarily justifiable quantifier-free finitary sentence is provable in T. 

 

4. Proof. Take any finitary sentence Q provable in T. (i) Suppose Q is quantifier-free. If Q is 
false, then ~Q is true and thus (given that ~Q is quantifier-free) finitarily justifiable, so by (1) 
~Q is provable in T, and thus T is inconsistent. So “if T is consistent, Q is true” is finitarily 
justifiable. Given (0), Q is finitarily justifiable. (ii) Supose Q is of the form ∀xP(x), where 
P(x) is quantifier-free. Let k be any numeral. Since ∀xP(x) is provable in T, so is P(k) (by 
universal instantiation). But P(k) is quantifier-free, so by case (i) above P(k) is finitarily justi-
fiable, and thus (given that k was arbitrary) so is ∀xP(x). 
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GÖDEL’S FIRST THEOREM VS. HILBERT’S PROGRAM 

 

I. HILBERT’S IMPLICIT ARGUMENT AGAINST INCOMPLETENESS 
 

Premise 1: For every sentence S, either S is true (in N*) or ~S is true. 
Premise 2: In some sufficiently powerful axiomatizable theory every true sentence is provable. 
Conclusion: There is a sufficiently powerful axiomatizable theory T which includes every true 
sentence and which is such that, for every sentence S, either S is provable in T or ~S is prova-
ble in T (i.e., T is complete). 
 

The argument is deductively valid, and premise 1 is integral to Hilbert’s program. But Hilbert 
can drop premise 2: he aims at establishing the truth of every provable (finitary) sentence, not 
the provability of every true sentence. 
 

II. HOW GÖDEL’S FIRST THEOREM LIMITS HILBERT’S PROGRAM 
 

1. To fully justify (from a practical point of view) classical mathematics to intuitionists, Hil-
bert would need to establish not only (2) but also (3): 
    (2) Every finitary sentence provable in T is finitarily [and thus intuitionistically] justifiable. 
    (3) Every sentence provable in T is intuitionistically justifiable. 
 

2. But Gödel’s first theorem provides a counterexample to (3): 
    (4) If T = T* + ~GT*, then ~GT* is provable in T but is intuitionistically unjustifiable. 
 

3. Proof. GT* is intuitionistically justifiable because Gödel’s reasoning provides an 
intuitionistically acceptable proof of the unprovability of GT* in T*, and GT* says precisely 
that it is unprovable in T*. 
 

4. Note that (4) is no counterexample to (2) because ~GT* is the negation of an unbounded 
universally quantified sentence (since GT* is equivalent in T* to the consistency sentence of 
T*) and is thus not a finitary sentence. 

 

GÖDEL’S SECOND THEOREM VS. HILBERT’S PROGRAM 
 

I. HOW GÖDEL’S 2ND THEOREM AFFECTS JUSTIFYING CONSISTENCY 
 

1. Although, as we saw, Hilbert only needs to assume (1), it is hard to see how he can avoid 
assuming also (1*): 
    (1)   Every finitarily justifiable quantifier-free finitary sentence is provable in T. 
    (1*) Every finitarily justifiable finitary sentence is provable in T. 
 

2. But if one assumes (1*), given SIT it follows that, if T is consistent, then the consistency 
sentence of T is finitarily unjustifiable, so Hilbert’s second goal is unachievable. 
 

3. Proof. Given that the consistency sentence of T is a finitary sentence, if this sentence is 
finitarily justifiable, then by (1*) it is provable in T. But then by SIT T is inconsistent. 
 

II. HOW THE TWO PERSPECTIVES ACCOMMODATE GÖDEL’S WORK 
 

1. Both classical mathematicians and intuitionists accept that Gödel’s work shows that truth 
(in the standard interpretation) transcends provability in any given formal system. 
 

2. But intuitionists only assert that, given any particular formal system, one can produce a true 
sentence which is unprovable in that system. Classical mathematicians, by contrast, assert in 
addition that there is a completed infinite totality of true sentences, a determinate collection 
which results “after” the never-ending process of extension is completed. 
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SKEPTICISM ABOUT CONSISTENCY 

 
I. THE ISSUE 
 

1. It is a consequence of Gödel’s Second Incompleteness Theorem (SIT) that: 
    (1) If PA is consistent, then the consistency of PA is unprovable in PA. 
 

2. Is there a good argument from (1) to (2)? 
    (2) The consistency of PA is doubtful. 
 

3. Is there a good argument from (1) to (3)? 
    (3) The consistency of PA is unprovable. 
 
II. DOES SIT RENDER THE CONSISTENCY OF PA DOUBTFUL? 
 

1. Not for those who are (reasonably) certain that the axioms of PA are true (and thus that PA 
is consistent). Why expect the consistency of PA to be provable in PA? 
 

2. One might think that (1) renders the consistency of PA doubtful because (1) lowers the 
probability that PA is consistent. Surprisingly, however, something like the opposite is true: it 
is more probable that PA is consistent given that it cannot prove its own consistency than giv-
en that it can. 
 
III. DOES SIT RENDER THE CONSISTENCY OF PA UNPROVABLE? 
 

No, because one can prove (and Gentzen has proved) the consistency of PA by using a meth-
od not formalizable in PA (namely transfinite induction). 
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LUCAS’S ARGUMENTVERSION I 

 
I. DEFINITIONSVERSION I 
 

1. A machine M corresponds to a theory T exactly if the potential output of the machine con-
sists of all and only the theorems of T. (So a given machine corresponds to at most one theo-
ry.) 
 

2. A machine M adequately represents a human mind H (as far as mathematical reasoning is 
concerned) exactly if the machine corresponds to a theory whose theorems are all and only the 
sentences of the language of arithmetic that the human mind can (in principle) show to be true 
(in the standard interpretation). 
 

3. A machine is axiomatizable exactly if it corresponds to an axiomatizable theory. 
 

4. A machine is consistent exactly if it corresponds to a consistent theory. 
 
II. LUCAS’S THESIS 
 

No consistent and axiomatizable machine adequately represents a human mind. 
 
III. LUCAS’S ARGUMENTVERSION I 
 

1. Consider a human mind H and suppose for reductio that some consistent and axiomatizable 
machine M adequately represents H. 
 

2. Then M corresponds to a consistent and axiomatizable theory T which is an extension of 
PA (since the human mind can show every theorem of PA to be true). 
 

3. By Gödel’s First Incompleteness Theorem, T does not contain its Gödel sentence, GT. 
 

4. But H can show that GT is true (because GT is equivalent to “GT is not in T”, which H 
knows from FIT). 
 

5. So there is a sentence of the language of arithmetic (namely GT) that is not in T but that H 
can show to be true. This contradicts the assumption that M adequately represents H, and the 
reductio is complete. 
 
IV. THE STANDARD RESPONSE 
 

Step 4 is problematic: H can show that, if T is consistent, GT is [not in T and is thus] true, but 
in general H cannot show that T is consistent. 
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LUCAS’S ARGUMENTVERSION II 

 
I. INTRODUCTION 
 

1. Lucas insists that his argument is essentially dialectical: “It is not a straightforward proof, 
starting from some acceptable premises …, but rather it is a schema of refutation, showing 
how if the mechanist were to … say what machine was equivalent to a named man, the men-
talist can refute at least that equivalence.” 
 

2. The crucial point is that the output of a human mind varies depending on the input, namely 
on which (if any) machine is proposed as “equivalent” to (i.e., adequately representing) the 
mind. “The mind does not go round uttering theorems in the hope of tripping up any machines 
that may be around.” 
 
II. DEFINITIONSVERSION II 
 

1. A machine M corresponds to a theory T given input I exactly if the potential output of the 
machine when its input is I consists of all and only the theorems of T. 
 

2. A machine M adequately represents a human mind H exactly if, for every input I, the ma-
chine corresponds given I to a theory whose theorems are all and only the sentences of the 
language of arithmetic that the human mind can (in principle) show, given input I, to be true. 
 

3. A machine is axiomatizable exactly if, for every input I, the machine corresponds given I to 
an axiomatizable theory. 
 

4. A machine is consistent exactly if, for every consistent input I, the machine corresponds 
given I to a consistent theory. 
 
III. LUCAS’S THESIS 
 

No consistent and axiomatizable machine adequately represents a human mind. 
 
IV. LUCAS’S ARGUMENTVERSION II 
 

1. Consider a human mind H and suppose for reductio that some consistent and axiomatizable 
machine M adequately represents H. Let input I consist of the sentence “M is consistent”. 
 

2. Then M corresponds, given input I, to a consistent and axiomatizable theory T whose theo-
rems are all and only the sentences of the language of arithmetic that H can show, given input 
I, to be true. 
 

3. Then T is an extension of PA, and by Gödel’s First Incompleteness Theorem, T does not 
contain its Gödel sentence, GT. 
 

4. Since I consists of the sentence “M is consistent”, given input I, H can show that GT is true 
(because H can show that, if M is consistent, GT is true). 
 

5. So there is a sentence in the language of arithmetic (namely GT) that is not in T but that H 
can show, given input I, to be true. This contradicts the assumption that M adequately repre-
sents H, and the reductio is complete. 
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GAIFMAN’S ARGUMENT 

 
I. DEFINITIONS 
 

1. A machine M corresponds to a theory T exactly if the potential output of the machine con-
sists of all and only the theorems of T. (So a given machine corresponds to at most one theo-
ry.) 
 

2. A machine M adequately represents a human mind H (as far as mathematical reasoning is 
concerned) exactly if the machine corresponds to a theory whose theorems are all and only the 
sentences of the language of arithmetic that the human mind can (in principle) show to be true 
(in the standard interpretation). 
 

3. A machine is axiomatizable exactly if it corresponds to an axiomatizable theory. 
 

4. A machine is consistent exactly if it corresponds to a consistent theory. 
 

5. A human mind is consistent exactly if the set of all and only those sentences of the lan-
guage of arithmetic that the human mind can show to be true is consistent. 
 
II. GAIFMAN’S THESIS 
 

No axiomatizable machine can be shown by a human mind which can show that it is con-
sistent to adequately represent it. I.e.: If a human mind H can show that H is consistent, then 
for every axiomatizable machine M, H cannot show that M adequately represents H [even if 
M does in fact adequately represent H]. 
 
III. GAIFMAN’S ARGUMENT 
 

1. Suppose, for reductio, that for some human mind H and for some axiomatizable machine 
M, H can show both that H is consistent and that M adequately represents H (so that M in fact 
adequately represents H). 
 

2. Then M corresponds to a consistent and axiomatizable theory T whose theorems are all and 
only the sentences of the language of arithmetic that H can show to be true. 
 

3. Then T is a consistent and axiomatizable extension of PA, and by Gödel’s Second Incom-
pleteness Theorem, T does not contain its consistency sentence, ConT. 
 

4. Since H can show both that H is consistent and that M adequately represents H, H can show 
that T is consistent; i.e., that ConT is true. 
 

5. So there is a sentence in the language of arithmetic (namely ConT) that is not in T but that H 
can show to be true. This contradicts the assumption that M adequately represents H, and the 
reductio is complete. 
 
IV. SIGNIFICANCE OF GAIFMAN’S THESIS 
 

If we can show that we are consistent, we can never recognize that a particular axiomatizable 
machine adequately represents us. This inability is a structural inherent feature of us; it is not 
due to our physical limitations. 
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PENROSE’S ARGUMENT 
 

PART 1: A DIALOGUE 
 

Human: Have you looked over the articles I lent youthe ones by Gödel, and also the others, 
that discuss implications of his theorem? 
 

Robot: Certainlyalthough the articles were rather elementary, they were interesting. I’m 
sure that I would have thought of the theorem myself if I’d had just a little more time. 
 

Human: By the way, have I ever shown you the particular detailed rules that we used in order 
to set in train the computational procedures that led to the construction and development of 
you and your robot colleagues? It’s all in these files and computer disks. 
 

Robot (some 13 minutes, 41.7 seconds later): Fascinatingalthough at a quick glance, I can 
see at least 519 obvious ways that you could have achieved the same effect more simply. 
 

Human: I think we have done a good enough job. Goodnessthe mathematical abilities of 
you and your colleagues seem now to be very impressive indeed. You are now beginning to 
move far ahead of the capabilities of all human mathematicians. 
 

Robot: That’s clearly true. Even as we speak, I have been thinking of a number of new theo-
rems that go far beyond results published in the human literature. Also, my colleagues and I 
have noticed a few fairly serious errors in results that have been accepted as true by human 
mathematicians over a number of years. 
 

Human: What about you robots? Don’t you think that you and your robot colleagues might 
sometimes make mistakesI mean when you assert theorems as definitively established? 
 

Robot: No, certainly not. Once a mathematical robot has asserted that some result is a theo-
rem, then it can be taken that the result is unassailably true. My colleagues and I have felt un-
easy about the comparatively slipshod standards that your human mathematical colleagues are 
prepared to put up with. We are proposing to start a comprehensive database of mathematical 
theorems that we accept as having been unassailably established. These results will be as-
signed a special imprimatur *, signifying acceptance by our Society for Mathematical Intelli-
gence in the Robot Community (SMIRC)a society with extremely rigorous criteria for 
membership. You can rest assured that when we assign our imprimatur * to a result, we do 
guarantee its mathematical truth. 
 

Human: Something has occurred to me. Those original mechanisms M, according to which 
my colleagues and I set in train all the developments that led to the present community of 
mathematical robotsdo you realize that they provide a computational procedure for gener-
ating all the mathematical assertions that will ever be *-accepted by SMIRC? The family of 
all *-assertions that you will ever eventually come up with can be generated by one particular 
Turing machine. I could even specify that particular Turing machine in practice, using all 
those files and disks I showed you. 
 

Robot: That is a very elementary remark. Yes, you could do it, but it’s hardly worth wasting 
months of your precious time; I can do it straight off, if you would like me to. 
 

Human: No, there is no point in that. But I want to follow these ideas up for a moment. Let’s 
refer to the computational procedure that generates *-asserted sentences as Q(M), or as just Q 



 
for short. It follows that there must be a Gödel-type mathematical assertionwhich I’ll call 
G(Q)—and the truth of G(Q) is a consequence of the assertion that you robots never make 
mistakes with regard to the sentences that you are prepared to claim with *-certainty. 
 

Robot: Yes; you must be right … hmm. 

 

Human: And G(Q) must actually be true, because you robots never do make mistakes with 
regard to your *-assertions. 
 

Robot: Of course. 
 

Human: Wait a minute … it would also follow that G(Q) must actually be something that you 
robots are incapable of perceiving as being actually trueat least, not with *-certainty. 
 

Robot: The fact that we robots were originally constructed according to M, together with the 
fact that our *-assertions are never wrong, does have the clear and unassailable implication 
that the sentence G(Q) must be true. I suppose you are thinking I ought to be able to persuade 
SMIRC to give the *-imprimatur to G(Q). Indeed, they must accept this. Yet … it’s impossi-
ble that they can accept G(Q), because, by its very nature of your Gödel’s construction, G(Q) 
is something that lies outside what can be *-asserted by usprovided that we do not in fact 
ever make mistakes in our *-assertions. I suppose you might think this implies that there must 
be some doubt in our minds as to the reliability of our assignations of *. However, I don’t 
concede that our *-assignations might ever be wrong, especially with all the care and precau-
tions that SMIRC are going to be taking. It must be the case that it’s you humans who have 
got it wrong, and the procedures incorporated into Q are not after all the ones you used, de-
spite what you are telling me and what your documentation seems to assert. Anyway, SMIRC 
will never be absolutely sure of the fact that we have actually been constructed according to 
M, i.e., by the procedures encapsulated by Q. We have only your word to go on for that. 
 

Human: I can assure you that they are the ones we used; I should know, since I was personal-
ly responsible for them. 
 

Robot: Perhaps one of your assistants got it wrong when following out your instructions. 
 

Human: You’re grasping at straws. Even if someone did introduce some errors, my colleagues 
and I should eventually be able to track them down and so find out what your Q really is. I 
think what worries you is the fact that we actually knowor at least can find outwhat pro-
cedures were used to set up your construction. This means that we could actually write down 
the sentence G(Q) and know for sure that it is actually trueprovided that it is in fact the case 
that you never make mistakes in your *-assertions. However, you cannot be sure that G(Q) is 
true; at least you cannot assign it the certainty that would satisfy SMIRC sufficiently to give it 
*-status. This would seem to give us humans an ultimate advantage over you robots, in prin-
ciple if not in practice, since there are sentences that are in principle accessible to us but not to 
you. I don’t think that you robots can face such a possibilityyes, of course, that’s why you 
are so uncharitably accusing us of having got it wrong! 
 

Robot: Don’t go attributing your petty human motives to us. But of course it’s true that I can’t 
accept that there are sentences accessible to humans but not to robots. Robot mathematicians 
are certainly in no way inferior to human mathematiciansthough I suppose it’s conceivable 
that, conversely, any particular sentence that is accessible to us is also, in principle, eventually 
accessible to humans in their plodding ways. OK. I suppose that you might believe that it is 
just conceivable that, occasionally, the members of SMIRC might make a mistake in their as-
signations of *. I suppose also that SMIRC might not be unassailably convinced that their as-



 
signations of * are invariably error free. In this way, G(Q) could fail to acquire *-status, and 
the contradiction would be avoided. Mind you, this is not to say that I am admitting that we 
robots would ever make erroneous *-assertions. It’s just that we cannot be absolutely sure that 
we would not. 
 

Human: Are you trying to tell me that although truth is absolutely guaranteed for each indi-
vidually asserted sentence, there is no guarantee that there is not some error amongst the 
whole collection of them? Surely that’s illogical, isn’t it? 
 

Robot: I can’t accept that robots are illogical. The sentence G(Q) is only a consequence of the 
other sentences if it is actually the case that we were constructed according to M. We cannot 
guarantee G(Q) simply because we cannot guarantee that we were constructed according to 
M. Robot certainly cannot depend on human fallibility. 
 

Human: Your uncertainty as to the procedures that actually underlie your own construction 
must surely place some doubts in your mind as to whether all *-sentences must be true, if only 
because you might not trust us to have set up things correctly. 
 

Robot: I suppose I’m prepared to admit that because of your own unreliability, there could be 
some tiny uncertainty, but since we have evolved so far away from those initial sloppy proce-
dures of yours, this is not an uncertainty large enough to take seriously. But you might per-
haps be thinking that there could be some inbuilt, systematic error in robot reasoning. This I 
refuse to accept; it’s simply inconceivable to me that the underlying principles that govern 
SMIRC’s *-acceptance of mathematical argument could be wrong in such a blatant way. 
 

Human: Something else occurs to me. It doesn’t matter whether you are prepared to accept 
that the particular mechanisms M were the things underlying your own construction, provided 
that you merely agree that this is a logical possibility. SMIRC would have to have another 
category of assertion which they were not so unassailably convinced oflet us call these *M-
assertionsbut which they would regard as unassailable deductions from the assumption that 
they were all constructed from M. All the original *-assertions would be counted among the 
*M-assertions, of course, but also anything that they could unassailably conclude from the as-
sumption that it is M that governs their actions. They would not have to believe M, but as a 
logical exercise, they could explore the implications of this assumption. As we have agreed, 
G(Q) would have to count as a *M-assertion. Knowing the rules of M, it is then possible to ob-
tain a new algorithmic procedure QM, which generates precisely those *M-assertions (and their 
logical consequences) that SMIRC will accept on the basis of the assumption that they were 
constructed according to M. 
 

Robot: Of course; and while you were speaking, I have been amusing myself by working out 
the precise form of the algorithm QM … Yes, and now I have also anticipated you; I have also 
worked out its Gödel sentence G(QM). I’ll print it out for you if you want. 
 

Human: I don’t need it printed. But is G(QM) actually trueunassailably true? 
 

Robot: Oh, I see … SMIRC would accept G(QM) as trueunassailablybut only under the 
hypothesis that we were constructed according to Mwhich, as you know, is an assumption 
that I’m finding exceedingly dubious. The point is that G(QM) follows from the following as-
sertion : “all sentences that SMIRC is prepared to accept as unassailable, conditional upon the 
assumption that we were constructed according to M, are true”. So I don’t know whether 
G(QM) is actually true. It depends upon whether your dubious assumption is correct or not. 
 



 
Human: I see. So you are telling me that you (and SMIRC) would be prepared to ac-
ceptunassailablythe fact that the truth of G(QM) follows from the assumption that you 
were constructed according to M. 
 

Robot: Of course. 
 

Human: So the sentence G(QM) must be a *M-assertion then! 
 

Robot: Ye … eh … what? Yes, you’re right of course. But by its very definition, G(QM) can-
not itself be an actual *M-assertion unless at least one of the *M-assertions is actually false. 
Yes … this only confirms what I have been telling you all along, although now I can make the 
definitive claim that we actually have not been constructed according to M. 
 

Human: But that’s surely not the point. The same argument would apply whatever computa-
tional rules we used. So whatever ‘M’ I tell you, you can rule it out by that argument! 
 

(Adapted from Roger Penrose, Shadows of the Mind, pp. 179-189.) 
 

PART 2: THE ARGUMENT MORE FORMALLY 
 

I. DEFINITIONS 
 

1. Let TH be the theory whose theorems are all and only those sentences of the language of PA 
that H can show to be true (in N*). 
 

2. Let TM be the theory that corresponds to machine M. 
 

3. Let Q be the sentence ‘TH = TM’ (i.e., M adequately represents H). 
 

4. Let THQ be the set consisting of all and only those sentences S of the language of PA such 
that H can show that S follows from Q. 
 
II. PENROSE’S THESIS 
 

No consistent and axiomatizable machine adequately represents a human mind. 
 
III. PENROSE’S ARGUMENT 
 

0. It is enough to show that, for any consistent and axiomatizable machine M and for any hu-
man mind H, if H cannot show that M does not adequately represent H, then M does not ade-
quately represent H. (This is enough because, if H can show that M does not adequately rep-
resent H, then M does not adequately represent H.) 
 

1. Suppose, for reductio, that some consistent and axiomatizable machine M adequately repre-
sents some human mind H and H cannot show that M does not adequately represent H. 
 

2. Then TM = TH = T is a consistent and axiomatizable extension of PA, ~Q∉TH, and Q is true. 
 

3. Then THQ = TH+Q is consistent (since ~Q∉TH) and is an axiomatizable extension of (TH and 
thus of) PA, so ConTHQ∉THQ. 
 

4. But H can show that THQ is true and thus consistent if Q is true, so H can show that ConTHQ 
follows from Q, so ConTHQ∈THQ. Contradiction. 
 


	511hd00ambiguousterms
	AMBIGUOUS METALOGICAL TERMS

	511hd01intrologic
	INTRODUCTION TO LOGIC
	I. SENTENCES VERSUS PROPOSITIONS
	II. ARGUMENTS VERSUS ARGUMENT FORMS
	III. VALIDITY VERSUS LOGICAL VALIDITY



	511hd02syntax
	SYNTAX FOR FIRST-ORDER LOGIC
	I. SYMBOLS AND LANGUAGES

	II. TERMS
	III. FORMULAS
	IV. OFFICIAL AND UNOFFICIAL NOTATION

	511hd03semantics
	SEMANTICS FOR FIRST-ORDER LOGIC
	II. TRUTH OF A SENTENCE IN AN INTERPRETATION

	511hd04semanticmetalogical
	511hd05syntacticmetalogical
	511hd06compactnessLoewenheimSkolem
	II. AN APPLICATION
	THE LÖWENHEIM-SKOLEM THEOREMS

	II. THREE APPLICATIONS

	511hd07FirstIncompletenessTheoremFormulation
	I. INFORMAL FORMULATION
	II. CLARIFICATION OF CONCEPTS
	III. RIGOROUS FORMULATION

	IV. WHAT THE THEOREM DOES AND DOES NOT IMPLY

	511hd08FirstIncompletenessTheoremProofStrategy
	II. HOW TO PROVE GÖDEL’S FIRST THEOREM

	511hd09GoedelNumbering
	I. GÖDEL NUMBERS OF SYMBOLS
	II. CODE NUMBERS OF SEQUENCES OF NATURAL NUMBERS
	III. GÖDEL NUMBERS OF EXPRESSIONS
	IV. GÖDEL NUMBERS OF PROOFS

	511hd10representability&decidability
	I. THE GOAL
	II. INTERMEDIATE STEP
	III. REPRESENTABILITY
	IV. HOW TO REACH THE GOAL

	511hd11fixedpointlemma
	I. REVIEW
	II. THE FIXED POINT LEMMA (DIAGONAL LEMMA)

	III. THE LAST STAGE OF THE PROOF
	IV. ROSSER’S INCOMPLETENESS THEOREM


	511hd12FirstIncompletenessTheoremConsequences
	I. TRUTH DOES NOT GUARANTEE PROVABILITY
	II. NONSTANDARD MODELS OF PA
	III. UNDECIDABILITY/NON-AXIOMATIZABILITY OF ARITHMETIC
	IV. UNDEFINABILITY OF TRUTH
	V. NON-REPRESENTABILITY OF THEOREMHOOD

	511hd13SecondIncompletenessTheoremFormulation
	I. INFORMAL FORMULATION
	II. CLARIFICATIONS
	IV. RIGOROUS FORMULATION

	511hd14SecondIncompletenessTheoremProof
	I. THE PROOF
	II. THE LEMMA


	511hd15computability
	COMPUTABILITY
	I. FOUR KINDS OF COMPUTABILITY

	511hd16Hilbertsprogram
	HILBERT’S PROGRAM
	I. BACKGROUND: CLASSICAL MATHEMATICS VS. INTUITIONISM
	II. THE GOALS OF HILBERT’S PROGRAM
	III. FINITARY SENTENCES AND FINITARY JUSTIFIABILITY
	IV. FINITARILY JUSTIFYING CONSISTENCY

	511hd17HilbertsprogramvsGoedel
	GÖDEL’S FIRST THEOREM VS. HILBERT’S PROGRAM
	I. HILBERT’S IMPLICIT ARGUMENT AGAINST INCOMPLETENESS
	II. HOW GÖDEL’S FIRST THEOREM LIMITS HILBERT’S PROGRAM
	I. HOW GÖDEL’S 2ND THEOREM AFFECTS JUSTIFYING CONSISTENCY


	511hd18skepticismconsistency
	SKEPTICISM ABOUT CONSISTENCY
	I. THE ISSUE
	II. DOES SIT RENDER THE CONSISTENCY OF PA DOUBTFUL?
	III. DOES SIT RENDER THE CONSISTENCY OF PA UNPROVABLE?

	511hd19LucasI
	LUCAS’S ARGUMENT(VERSION I
	I. DEFINITIONS(VERSION I
	II. LUCAS’S THESIS
	III. LUCAS’S ARGUMENT(VERSION I
	IV. THE STANDARD RESPONSE

	511hd20LucasII
	LUCAS’S ARGUMENT(VERSION II
	I. INTRODUCTION
	II. DEFINITIONS(VERSION II
	III. LUCAS’S THESIS
	IV. LUCAS’S ARGUMENT(VERSION II

	511hd21Gaifman
	GAIFMAN’S ARGUMENT
	I. DEFINITIONS

	II. GAIFMAN’S THESIS
	III. GAIFMAN’S ARGUMENT
	IV. SIGNIFICANCE OF GAIFMAN’S THESIS

	511hd22Penrose
	PENROSE’S ARGUMENT
	PART 1: A DIALOGUE


