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PRACTICE ARGUMENTS 
 

I. CLASSICAL PROPOSITIONAL LOGIC 
 

1. There will be nuclear war if and only if there is proliferation of nuclear weapons and unrest in the 

developing nations. Nuclear weapons will proliferate if and only if there is an increase in the use of 

nuclear power and nuclear safeguards are inadequate. There will be unrest in the developing nations if 

economic conditions do not improve. There will be an increase in the use of nuclear power and economic 

conditions will not improve. Therefore, nuclear war will be avoided only if there are adequate nuclear 

safeguards. (N, W, U, P, S, E) 
 

2. I will find a job when I graduate only if I am well prepared, and I will be well prepared only if I can 

read and write extremely well and have a good technical education. I will read and write extremely well if 
and only if I take a lot of Humanities courses. But if I take a lot of Humanities courses, I will not take 

many technical courses, and if I don’t take many technical courses, then I won’t have a good technical 

education. Therefore, I won’t find a job when I graduate. (J, W, R, E, H, T) 
 

3. If the Monetarists are right, then there is an increase in inflation if and only if the money supply 

increases too fast. If the Keynesians are right, then there is an increase in inflation if and only if there is a 

decrease in unemployment. If the Libertarians are right, then there is an increase in inflation if and only if 

the federal government spends more than it takes in. The federal government spends more than it takes in 

only if taxes are too low. There is no decrease in unemployment and taxes are not too low, but there is 

inflation. Therefore, neither the Monetarists, nor the Keynesians, nor the Libertarians are right. (M, I, S, 

K, D, L, F, T) 
 

4. Add to the premises of Argument 3: The money supply increases too fast only if taxes are too low. 
 

II. PROPOSITIONAL MODAL LOGIC 
 

5. It is possible that not all living things are able to feel pain. For, necessarily, all living things are able to 

feel pain only if all living things have nervous systems. And, necessarily, if plants do not have nervous 

systems, then not all living things have nervous systems. And it is possible that plants do not have 

nervous systems. (L, N, P) 
 

6. The reduction of violence is necessary and sufficient for making drugs legal. But it is possible that 

more people will use drugs if drugs are made legal. And, necessarily, violence will not be reduced if more 

people use drugs. It follows that drugs will not necessarily be made legal. (V, L, P) 
 

7. I can know nothing. For every piece of reasoning must start somewhere. And, necessarily, if every 

piece of reasoning starts somewhere, then every piece of reasoning begins with an unsupported premise. 

And, necessarily, if every piece of reasoning begins with an unsupported premise, then I know nothing. 

(K: I know nothing; S: every piece of reasoning starts somewhere; U: every piece of reasoning begins 

with an unsupported premise.) 
 

8. It is not necessary that ghosts fail to exist. Therefore, the conjunction of “necessarily, spirits exist” and 

“necessarily, ghosts don’t exist” entails “necessarily, God exists”. (A: spirits exist; B: ghosts exist; C: God 

exists.) 
 

9. If your argument is valid, I must be mistaken. If your argument is valid, it must be necessarily valid. So 

if your argument is valid, I must be necessarily mistaken. (V: your argument is valid; M: I am mistaken.) 
 

10. Necessarily, it is possible for you to walk to the door only if it is possible for you to walk to the 
halfway point between yourself and the door. Necessarily, however, it is possible for you to walk to the 

halfway point between yourself and the door only if it is possible for you to walk to a point halfway to the 

halfway point. Necessarily, if it is impossible for you to walk halfway to the halfway point only if it is 
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impossible for you to walk to the door, then it is possible for you to walk to the door only if it is possible 

for you to perform an infinite number of acts in a finite period of time. But it is necessarily impossible for 

you to perform an infinite number of acts in a finite period of time. So it is necessarily impossible for you 

to walk to the door. (D: you walk to the door; H: you walk to the halfway point between yourself and the 

door; P: you walk halfway to the halfway point; F: you perform an infinite number of acts a finite period 

of time.) 
 

11. Necessarily, if the workplace is a meritocracy, then it is necessary that Joe will be hired if Joe is the 

most qualified candidate. But, necessarily, if networking plays a role in who gets jobs, then it is possible 

that Joe will not be hired despite being the most qualified candidate. Furthermore, it is possible that 

networking does play a role in who gets gobs. Therefore, it is possible that the workplace is not a 

meritocracy. (W: the workplace is a meritocracy; H: Joe will be hired; Q: Joe is the most qualified 

candidate; N: networking plays a role in who gets jobs.) 
 

12. Necessarily, it could not have failed to be the case that either it rains or it doesn’t rain. For, 

necessarily, if it could have failed to be the case that either it rains or it doesn’t rain, then the argument 

from the claim that the sky is blue to the claim that either it rains or it doesn’t rain would not have been 

valid. And that argument is necessarily valid. (R: either it rains or it doesn’t rain; Q: the sky is blue.) 
 

13. Necessarily, being possibly undetermined is a necessary but not a sufficient condition for human 

behavior’s being free. Necessarily, the laws of subatomic physics are statistical only if it is necessary that 

human behavior is necessarily undetermined. And the laws of subatomic physics are necessarily 

statistical. It follows that human behavior is necessarily free. (D: human behavior is determined; F: 

human behavior is free; L: the laws of subatomic physics are statistical.) 
 

14. Necessarily, if God’s existence is contingent, then God’s existence is a matter of metaphysical luck. 

But it is impossible for God’s existence to be a matter of metaphysical luck. Necessarily, God’s existence 

is not impossible if it is possible for an omnipotent and perfectly good being to exist. And it is necessarily 

possible for an omnipotent and perfectly good being to exist. Therefore, God’s existence is necessary. (G: 

God exists; M: God’s existence is a matter of metaphysical luck; O: an omnipotent and perfectly good 

being exists.) 
 

15. Necessarily, if it is possible that God believes on Monday that I will lie on Tuesday, then either it is 

possible for me to make one of God’s past beliefs false, or it is impossible that I refrain from lying on 

Tuesday. Necessarily, it is impossible for me to make one of God’s past beliefs false if either God is 

necessarily infallible or it is impossible for me to change the past. It is impossible for me to change the 

past. It follows that, necessarily, it is possible that if God necessarily believes on Monday that I will lie on 

Tuesday then it is impossible that I refrain from lying on Tuesday. (B: God believes on Monday that I will 

lie on Tuesday; F: I make one of God’s past beliefs false; R: I refrain from lying on Tuesday; I: God is 

infallible; P: I change the past.) 
 

16. Necessarily, if time is real then it is impossible for God to be outside of time. For, as St. Thomas 

Aquinas pointed out, necessarily, if it is possible for God to be outside of time, then it is possible for God 

to see all of time (past, present, and future) at a glance. But, necessarily, if God sees all of time at a 

glance, then the future already exists. And, necessarily, if the future already exists, then I have already 

committed sins that I will commit in the future. But it is definitely possible that, necessarily, both time is 

real and I have not already committed sins that I will commit in the future. (T: time is real; O: God is 

outside of time; S: God sees all of time at a glance; F: the future already exists; I: I have already 

committed sins that I will commit in the future. 
 

17. Necessarily, there is life after death if and only if God necessarily exists. For, necessarily, either God 

necessarily exists or only matter exists. Necessarily, if only matter exists, there is no life after death. 

Necessarily, God exists if and only if God is both perfectly good and omnipotent. Necessarily, if God is 

omnipotent, then it is possible for God to raise humans from the dead. Necessarily, if God is perfectly 

good, then God wants to raise humans from the dead if human resurrection is necessary for human 

fulfillment. Human resurrection is indeed necessary for human fulfillment. Necessarily, if God wants to 
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raise humans from the dead and it is possible for God to do so, then there is life after death. (L: there is 

life after death; G: God exists; M: only matter exists; P: God is perfectly good; O: God is omnipotent; D: 

God raises humans from the dead; W: God wants to raise humans from the dead; R: human resurrection 

occurs; F: human fulfillment occurs.) 
 

18. Necessarily, if time travel is possible, then it is possible for me to go back in time and point a loaded 

gun at my infant self. Necessarily, if it is possible for me to go back in time and point a gun at my infant 

self, then it is possible for me to kill my infant self. Necessarily, if it is possible for me to kill my infant 

self, then it is possible for me to change the past. But it is impossible for me to change the past. It follows 

that time travel is necessarily impossible. (T: time travel occurs; G: I go back in time and point a loaded 

gun at my infant self; K: I kill my infant self; P: I change the past.) 
 

19. Necessarily, if time travel is possible, then it is possible for me to go back in time and point a loaded 

gun at my infant self. Necessarily, if I go back in time and point a loaded gun at my infant self, then my 

killing him is compossible with the fact that he is within the range of my gun. Necessarily, if I kill my 

infant self, then I exist at the same time as my infant self. It is not possible for me to exist at the same time 

as my infant self without being a later stage of my infant self. Necessarily, if I kill my infant self and I am 

a later stage of my infant self, then resurrection occurs. But resurrection is impossible. It follows that time 

travel is necessarily impossible. (T: time travel occurs; G: I go back in time and point a loaded gun at my 

infant self; K: I kill my infant self; F: my infant self is within the range of my loaded gun; C: I exist at the 

same time as my infant self; L: I am a later stage of my infant self; R: resurrection occurs.) 
 

20. Necessarily, I am an essentially simple object exactly if it is necessary that if I exist then I have no 

proper spatial part. Necessarily, if time travel is possible, then it is also possible that I visit my younger 

self. Necessarily, if I visit my younger self, then I exist and I have a proper spatial part. It follows that my 

being an essentially simple object and the possibility of time travel are not compossible. (S: I am an 

essentially simple object; E: I exist; P: I have a proper spatial part; V: I visit my younger self; T: time 

travel occurs.) 
 

21. It is necessarily possible that, if God necessarily exists, then resurrection is necessarily possible. It 

follows that, if God necessarily exists, then resurrection is necessarily possible. (G: God exists; R: 

resurrection occurs.) 
 

22. The Gödel sentence of Peano Arithmetic (PA) is necessary. Therefore, necessarily, if the Gödel 

sentence of PA is necessary, then the Gödel sentence of PA is necessarily equivalent to “the Gödel 

sentence of PA is necessary”. (G: the Gödel sentence of PA.) 
 

23. I know that: the Gödel sentence of Peano Arithmetic (PA) is true exactly if I don’t know that the 

Gödel sentence of PA is true. I also know that, if I know that the Gödel sentence of PA is true, then the 

Gödel sentence of PA is true. It follows that I know that the Gödel sentence of PA is true. (G: the Gödel 

sentence of PA.) 
 

24. It is provable in Peano Arithmetric (PA) that the Gödel sentence of PA is materially equivalent to “the 

Gödel sentence of PA is not provable in PA”. Therefore, if it is not provable in PA that it is both raining 

and not raining, then it is not provable in PA that it is not provable in PA that it is both raining and not 

raining—which is essentially Gödel’s second incompleteness theorem. (G: the Gödel sentence of PA; R: 

it is raining.) 
 

III. CLASSICAL QUANTIFIED LOGIC 
 

25. If there are any barbers, then there is a barber who shaves all and only those who do not shave 

themselves. Therefore, there are no barbers. (Bx: x is a barber; Sxy: x shaves y.) 
 

26. Every person is honest with any person who is honest with every person. There is at least one person 

who is honest with every person. Therefore, every person is honest with at least one person who is honest 

with them. (Px: x is a person; Hxy: x is honest with y.) 
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27. Every student who cheated bribed at least one professor. Some students were accused and so was 

every professor they bribed. All accused students cheated. Therefore, some professor cheated. (Sx: x is a 

student; Px: x is a professor; Ax: x was accused; Cx: x cheated; Bxy: x bribed y.) 
 

28. Replace the conclusion of Argument 27 with: Some professor cheated or is not a student. 
 

29. There is someone who teaches everyone who is taught by anyone. There is someone who teaches 

everyone who teaches anyone. Everyone who does not teach anyone is taught by someone. Therefore, 

there is someone who teaches everyone. (Txy: x teaches y.) 
 

IV. QUANTIFIED MODAL LOGIC 
 

30. Necessarily, everyone is possibly a mathematician. It is possible that someone is necessarily rational. 

Therefore, it is possible that someone is possibly a rational mathematician. (Mx: x is a mathematician; Rx: 

x is rational.) 
 

31. It is possible that everything is physical. Necessarily, something is mental. Therefore, it is possible 

that something mental is physical. (Px: x is physical; Mx: x is mental.) 
 

32. Necessarily, everything is either mental or physical. Therefore, it is possible that everything is mental, 

or it is possible that something is physical. (Mx: x is mental; Px: x is physical.) 
 

33. Everything is either necessarily material or necessarily non-material. Therefore, necessarily, God is 

material exactly if God is necessarily material. (Mx: x is material; g: God.) 
 

34. Necessarily, some number is even. Every number is possibly thought of by God. Therefore, it is 

possible that some even number is thought of by God. (Nx: x is a number; Ex: x is even; Tx: x is thought 

of by God.) 
 

35. Necessarily, every event such that something material possibly causes it is determined. Necessarily, 

some event that is possibly determined is not possibly free. Therefore, some event such that everything 

material necessarily does not cause it is not free. (Ex: x is an event; Mx: x is material; Dx: x is determined; 

Fx: x is free; Cxy: x causes y.) 
 

36. Necessarily, every contingent being is possibly causally dependent on some being. Necessarily, no 

necessary being is possibly causally dependent on anything. Necessarily, every physical entity is 

contingent. It follows that, necessarily, no physical entity is a necessary being. (Px: x is physical; Dxy: x is 

causally dependent on y.) 
 

37. Necessarily, no god possibly causes any possibly free act that she wants to occur. Necessarily, no god 

possibly causes any possibly free act that she does not want to occur. Therefore, necessarily, no god 

possibly causes any necessarily free act. (Gx: x is a god; Fx: x is a free act; Cxy: x causes y; Wxy: x wants 

y to occur.) 
 

38. Necessarily, every act is possibly caused by a desire. Necessarily, every desire is possibly caused by a 

brain process. Necessarily, for all x, y, and z, if x is possibly caused by y and y is possibly caused by z, 

then x is possibly caused by z. It follows that, necessarily, every act is possibly caused by a brain process. 

(Ax: x is an act; Dx: x is a desire; Bx: x is a brain process; Cxy: x causes y.) 
 

39. Necessarily, every existing object is such that, necessarily, it is material if God is not material. God is 

not material, and neither is the number zero. Every (existing or non-existing) object possibly exists. 

Therefore, necessarily, every existing object is such that, possibly, it is material and the number zero is 

not material. (Mx: x is material; g: God; n: the number zero.) 
 

40. Necessarily, everyone is either righteous or wicked. Necessarily, no one suffers any injustice from 

anyone who is righteous. Necessarily, one suffers an injustice from someone only if that someone takes 

away something possibly good from one. Necessarily, only virtuous things are possibly good. 

Necessarily, nothing virtuous is taken away by anyone from anyone who is righteous. Necessarily, 

everyone who is wicked possesses nothing that is possibly good. Necessarily, one takes away something 

from someone only if that someone possesses the thing. It follows that, necessarily, no one suffers any 
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injustice from anyone. (Rx: x is righteous; Wx: x is wicked; Ix: x is an injustice; Gx: x is good; Vx: x is 

virtuous; Pxy: x possesses y; Sxyz: x suffers y from z; Txyz: x takes y away from z.) 
 

41. Necessarily, something is such that everything possibly depends on it. Necessarily, anything that 

possibly depends on a thing is possibly sustained by it. Necessarily, anything that possibly sustains 

everything possibly depends on everything. It follows that, possibly, something possibly sustains 

something and is possibly sustained by it. (Dxy: x depends on y; Sxy: x sustains y.) 
 

42. It is possible that some existing deity is such that, necessarily, it exists, it is a deity, and it causes 

every existing material object. Therefore, it is necessary that every existing material object is caused by 

some existing deity (or other). (Dx: x is a deity; Mx: x is a material object; Cxy: x causes y.) 
 

43. Some natural number is such that every natural number is necessarily larger than it. Every natural 

number is necessarily a natural number. Therefore, given any natural number, it is necessary that it is 

larger than some natural number. (Nx: x is a natural number; Lxy: x is larger than y.) 
 

44. Necessarily, every proposition has a negation which is a proposition. Necessarily, for any proposition 
and any negation of it, it is necessary that: the negation is true if and only if the proposition is not true. 

Necessarily, for any proposition, and for any object with respect to which the proposition is singular, it is 

necessary that: the proposition is not true if the object does not exist. Necessarily, for any proposition, for 

any object with respect to which the proposition is singular, and for any negation of the proposition, it is 

necessary that: the negation of the proposition does not exist if the object does not exist. Necessarily, 

some proposition is singular with respect to a contingent object. It follows that, necessarily, some 

proposition is such that it is possible for it to be true without existing (Px: x is a proposition; Ox: x is an 

object; Tx: x is true; Nxy: x is a negation of y; Sxy: x is singular with respect to y.) 
 

45. Necessarily, a first proposition entails a second one exactly if the first is a subset of the second. 

Necessarily, if A is a subset of B, then, necessarily, if B exists then A exists. Necessarily, for any 

proposition, and for any object with respect to which the proposition is singular, it is necessary that if the 

proposition exists then the object exists. Necessarily, the proposition that someone is wise is entailed by 

the proposition that Socrates is wise, which is singular with respect to the object Socrates. It follows that 

it is necessarily impossible for the proposition that someone is wise to exist without Socrates. (Px: x is a 

proposition; Ox: x is an object; Exy: x entails y; Bxy: x is a subset of y; Sxy: x is singular with respect to y; 

q: the proposition that someone is wise; r: the proposition that Socrates is wise; s: Socrates.) 
 

46. Necessarily, for any set, it is necessary that: the set exists if and only if all of its members exist. 

Necessarily, for any set, it is necessary that every member of the set is necessarily a member of the set. 

Necessarily, a first set is subset of a second one if and only if every member of the first is a member of the 

second. It follows that, necessarily, if a first set is a subset of a second, then, necessarily, the second exists 

only if the first exists. (Sx: x is a set; Mxy: x is a member of y; Bxy: x is a subset of y.) 
 

47. Necessarily, for any propositions A, B, and C, A and B commitment-entail C exactly if, necessarily, 

given any person, if A is possible and follows from some proposition that the person believes and B 

follows from some proposition that the person desires, then C follows from some proposition that the 

person desires. Necessarily, for any propositions A and B, necessarily, B follows from A exactly if, 

necessarily, B is true if A is. Therefore, if from a proposition A a proposition follows which, necessarily, 

is true exactly if the proposition C follows from the proposition B, then A and B commitment-entail C. 

(Px: x is a proposition; Rx: x is a person; Tx: x is true; Bxy: x believes y; Dxy: x desires y; Fxy: x follows 

from y; Cxyz: x and y commitment-entail z.) 
 

48. Necessarily, there is an argument such that, necessarily, the argument is valid exactly if all of its 

premises are true and the argument is invalid exactly if a conclusion of it is true. Necessarily, an argument 

is valid exactly if, necessarily, if all of its premises are true, then a conclusion of it is true. Necessarily, for 

any argument, it is necessary that, if the argument is valid, then it is necessarily valid. It follows that, 

necessarily, there is an argument such that it is valid exactly if it is invalid. (Ax: x is an argument; Vx: x is 

valid; Tx: x is true; Pxy: x is a premise of y; Cxy: x is a conclusion of y.) 
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49. It is possible that some existing object is such that, necessarily, no existing object is greater than it. 

Necessarily, every possible object that exists is greater than any possible object that does not exist. 

Something exists. It follows that some existing object is such that, necessarily, no existing object is 

greater than it. (Gxy: x is greater than y.) 
 

V. IDENTITY 
 

50. Some existing object is necessarily identical with God. Every existing object is necessarily created. It 

follows that God is necessarily created. (Cx: x is created; g: God.) 
 

51. Necessarily, some existing object is identical with God. Therefore, some existing object is necessarily 

identical with God. (g: God.) 
 

52. Necessarily, if a first prescription follows from a second one, then, necessarily, if a balance of reasons 

supports the second prescription, then a balance of reasons supports the first prescription. Necessarily, at 

most one balance of reasons exists. It follows that, necessarily, if a first prescription follows from a 

second one, then, necessarily, every balance of reasons that supports the second prescription also supports 

the first prescription. (Px: x is a prescription; Bx: x is a balance of reasons; Sxy: x supports y; Fxy: x: 

follows from y.) 
 

53. It is possible that God is immaterial. Therefore, it is possible that something identical with God is 

immaterial. (Ix: x is immaterial; g: God.) 
 

54. Every existing object is such that, necessarily, it is identical to some existing object. It is possible that 

some existing object is immaterial. It follows that some existing object is possibly immaterial. (Ix: x is 

immaterial.) 
 

55. Bucephalus might have sired a horse other than every horse he actually sired. Therefore, it is not 

essential to everything that is not actually a horse sired by Bucephalus that it not be a horse sired by 

Bucephalus. (Hx: x is a horse; Sxy: x sires y; b: Bucephalus.) 
 

56. Bucephalus might have sired a horse other than every horse he actually sired. It is essential to every 

actual object that is not actually a horse sired by Bucephalus that it not be a horse sired by Bucephalus. 

Therefore, there might have existed an object distinct from every actual object. (Hx: x is a horse; Sxy: x 
sires y; b: Bucephalus.) 
 

57. Necessarily, if a wooden table x might have been the only table originally formed from a hunk of 

matter y, then it is impossible that some wooden table distinct from x is the only table formed from y. 

Necessarily, if a wooden table x is the only table originally formed from a hunk of matter y, and w is any 

hunk of matter that is sufficiently similar to y, then x might have been the only table originally formed 

from w. Necessarily, if a wooden table x is the only table originally formed from a hunk of matter y, and z 

is any hunk of matter that is not sufficiently similar to y, then x could not have been the only table 

originally formed from z. Therefore, it is not the case that some wooden table is the only table originally 

formed from a hunk of matter h such that some hunk of matter h is sufficiently similar to h, some hunk 

of matter h is sufficiently similar to h but not sufficiently similar to h, and it is possible that some 

wooden table is the only table originally formed from h. (Wx: x is a wooden table; Mx: x is a hunk of 

matter; Fxy: x is the only table originally formed from y; Sxy: x is sufficiently similar to y.) 
 

58. It is possible that some existing object is such that possibly some existing object is distinct from it. 

God is omnipotent. Necessarily, every existing object is such that, necessarily, it exists if God is 

omnipotent. It follows that at least two objects exist. (Ox: x is omnipotent; g: God.) 
 

59. Necessarily, every human is such that necessarily someone loves her. Necessarily, for every x, y, and 

z, if it is possible that y loves x and it is possible that z loves x, then y is identical to z. It follows that, 

necessarily, every human is such that someone necessarily loves her. (Hx: x is human; Lxy: y loves x.) 
 

60. Necessarily, a reason is complete exactly if, necessarily, for any prescription, if the reason supports 

the prescription, then the reason could not have been a reason without supporting the prescription. 
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Necessarily, every complete reason could have been the only complete reason. Necessarily, “come and 

talk” and “talk” are prescriptions. Necessarily, if some complete reason supports “come and talk”, then 

some complete reason supports “talk”. It follows that, necessarily, every complete reason that supports 

“come and talk” also supports “talk”. (Rx: x is a reason; Px: x is a prescription; Cx: x is complete; Sxy: x 

supports y; a: “come and talk”; b: “talk”.) 
 

VI. PREDICATE ABSTRACTION 
 

61. Necessarily, the supreme commander of the U.S. armed forces is the most powerful person in the 

world (de dicto). The U.S. President might not have been the supreme commander of the U.S. armed 

forces (de re). Therefore, the U.S. President might not have been the most powerful person in the world 

(de re). (: the U.S. President; : the supreme commander of the U.S. armed forces; : the most powerful 

person in the world.) 
 

62.The U.S. President is necessarily human (de re). The U.S. President could have been the author of 
Jane Eyre (de re). Therefore, it is possible that the author of Jane Eyre is human (de dicto). (Hx: x is 

human; : the U.S. President; : the author of Jane Eyre.) 
 

63. The teacher of Alexander is possibly distinct from the most famous Greek philosopher (de re). 

Aristotle is the teacher of Alexander. Therefore, the most famous Greek philosopher is possibly distinct 

from Aristotle (de re). (a: Aristotle; : the most famous Greek philosopher; : the teacher of Alexander.) 
 

64. The U.S. President might have been the French President (double de re). Therefore, The U.S. 

President is the French President. (: the U.S. President; : the French President.) 
 

65. It is impossible for different women to give birth to the same individual. The author of Jane Eyre and 

the author of Wuthering Heights might have been distinct women (de dicto). Necessarily, the author of 

Jane Eyre has the property (de re) of necessarily giving birth to the French ambassador. Necessarily, the 

author of Wuthering Heights has the property (de re) of necessarily giving birth to the German 

ambassador. Therefore, the French ambassador and the German ambassador might have been distinct (de 

dicto). (Wx: x is a woman; Bxy: x gives birth to y; : the author of Jane Eyre; : the author of Wuthering 

Heights; : the French ambassador; : the German ambassador.) 
 

66. Necessarily, the Grand Inquisitor has the property (de re) of being possibly a Catholic feared by every 

Catholic. Possibly, the Grand Inquisitor has the property (de re) of being necessarily such that the only 

Catholic he fears is the Pope. Therefore, it is possible that the Grand Inquisitor has the property (de re) of 

being not necessarily distinct from the Pope. (Cx: x is a Catholic; Fxy: x fears y; : the Grand Inquisitor; 

: the Pope.) 
 

67. Necessarily, the Grand Inquisitor has the property (de re) of being possibly a Catholic feared by every 

Catholic. Possibly, the Pope has the property (de re) of being necessarily the only Catholic that the Grand 

Inquisitor fears. Possibly, the Grand Inquisitor is necessarily identical with Charles XVI (de dicto). 

Possibly, the Pope is necessarily identical with Paul XXII (de dicto). Therefore, Charles XVI is identical 

with Paul XXII. (Cx: x is a Catholic; Fxy: x fears y; : the Grand Inquisitor; : the Pope; c: Charles XVI; 

p: Paul XXII.) 
 

VII. DEFINITE DESCRIPTIONS 
 

68. The tallest golden mountain exists, and every existing object could have failed to be a tallest golden 

mountain. It follows that the tallest golden mountain has the property (de re) of being such that, possibly, 

it is not the case that it is identical to the tallest golden mountain. (Gx: x is a golden mountain; Txy: x is at 

least as tall as y.) 
 

69. The possible perfect being is self-identical. The perfect being has the property (de re) of being 

necessarily the perfect being. It follows that the possible perfect being is the perfect being. (Px: x is a 

perfect being.) 
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70. Every tallest existing giraffe is a tallest existing animal. There is a unique tallest existing giraffe, and 

there is a unique tallest existing animal. Therefore, the tallest existing giraffe is the tallest existing animal. 

(Gx: x is a giraffe; Ax: x is an animal; Txy: x is at least as tall as y.) 
 

71. Necessarily, the most powerful being exists. Therefore, it is not the case that, for every existing 

object, the most powerful being has the property (de re) of being possibly distinct from that object. (Pxy: 
x is at least as powerful as y.) 
 

72. Necessarily, the most powerful being exists. The possible most powerful being exists. Therefore, the 

possible most powerful being has the property (de re) of being possibly the most powerful being. (Pxy: x 

is at least as powerful as y.) 
 

73. Necessarily, either the fountain of youth has the property of existence or the fountain of youth has the 

property of non-existence. Therefore, every existing object identical with the possible fountain of youth is 

such that possibly it is identical with the fountain of youth. (Fx: x is a fountain of youth.) 
 

74. It is possible that the creator of the largest solar system is the most powerful person (de dicto). 
Necessarily, the creator of the largest solar system creates only material entities. Therefore, it is possible 

that the most powerful person creates a solar system that is a material entity. (Sx: x is a solar system; Rx: x 

is a person; Mx: x is a material entity; Lxy: x is at least as large as y; Pxy: x is at least as powerful as y; 

Cxy: x is creates y.) 
 

MAIN SOURCES 
(From which the above arguments were taken, usually with considerable modifications. The original authors need not endorse the modified 

arguments. Please do not quote or circulate without permission from the original authors.) 

Boolos, G. (1994). Gödel’s second incompleteness theorem explained in words of one syllable. Mind, 103, 1-3. [Argument 24.] 
DiPaolo, J. (2008). Simple self-visitation. Unpublished. [Argument 20.] 

Fitting, M., & Mendelsohn, R. L. (1998). First-order modal logic. Dordrecht: Kluwer. [Arguments 21, 30, 43, 54, 61-64, 68-73.] 

Forbes, G. (1994). Modern logic: A text in elementary symbolic logic. New York: Oxford University Press. [Arguments 25-29, 39, 42, 58-59, 65.] 

Howard-Snyder, F., Howard-Snyder, D., & Wasserman, R. (2009). The power of logic (4th ed.). New York: McGraw-Hill. [Arguments 5-7, 10-

17, 35-38.] 
Hoffmann, A. (2002). Actualism, singular propositions, and possible worlds: Essays in the metaphysics of modality. Doctoral dissertation, 

Massachusetts Institute of Technology. [Arguments 55-56.] 

Hoffmann, A. (2003). A puzzle about truth and singular propositions. Mind, 112, 635-651. [Argument 44.] 

Hoffmann, A. (2012). Are propositions sets of possible worlds? Analysis, 72, 449-455. [Arguments 45-46.] 

Jacquette, D. (2001). Symbolic logic. Belmont, CA: Wadsworth. [Arguments 40-41.] 
Jacquette, D. (2002). Modality of deductively valid inference. In D. Jacquette (Ed.) A companion to philosophical logic (pp. 256-261). Oxford: 

Blackwell. [Argument 48.] 

Klenk, V. (2007). Understanding symbolic logic (5th ed.). Upper Saddle River, NJ: Pearson Prentice Hall. [Arguments 1-4.] 

Salmon, N. (1986). Modal paradox: Parts and counterparts, points and counterpoints. In P. A. French, T. E. Uehling, Jr., & H. K. Wettstein 

(Eds.), Midwest studies in philosophy: Vol. 11. Studies in essentialism (pp. 75-120). Minneapolis: University of Minnesota Press. [Argument 
57.] 

Vranas, P. B. M. (2009). Time travel: Two kinds of consistency paradoxes. Unpublished. [Arguments 18-19.] 

Vranas, P. B. M. (2011). New foundations for imperative logic: Pure imperative inference. Mind, 120, 369-446. [Arguments 52, 60.] 

Vranas, P. B. M. (2012). New foundations for imperative logic III: A general definition of argument validity. Unpublished. [Arguments 9, 47.] 
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REVIEW OF CLASSICAL PROPOSITIONAL LOGIC: 

NATURAL DEDUCTION 
 

I. LOGICAL CONNECTIVES 
 

p q ~p p & q p  q p → q p  q 

T T F T T T T 

T F F F T F F 

F T T F T T F 

F F T F F T T 
 

II. TRANSLATIONS 
 

p but q p & q 

Neither p nor q ~p & ~q 

Either p or q p  q 

p unless q p  q 

Assuming p, q p → q 

q if p p → q 

p only if q p → q 

p exactly if q p  q 
 

III. REPLACEMENT RULES 
 

Name Abbrev. Rule 

Double Negation DN ~~p  p 

Tautology Taut p  (p & p) 

p  (p  p) 

Commutation Comm (p & q)  (q & p) 

(p  q)   (q  p) 

Association Assoc ((p & q) & r)  (p & (q & r)) 

((p  q)  r)   (p  (q  r)) 

Distribution Dist (p & (q  r))  ((p & q)  (p & r)) 

(p  (q & r))  ((p  q) & (p  r)) 

De Morgan’s Law DeM ~(p  q)   (~p & ~q) 

~(p & q)  (~p  ~q) 

Material Implication Impl (p → q)  (~p  q) 

Transposition Trans (p → q)  (~q → ~p) 

Absorption Abs (p → q)  (p → (p & q)) 

Exportation Exp (p → (q → r))  ((p & q) → r) 

Negated Conditional NC ~(p → q)  (p & ~q) 

Material Equivalence Equiv (p  q)  ((p → q) & (q → p)) 

(p  q)  ((p & q)  (~p & ~q)) 

 

 



 

 

IV. WHOLE-LINE INFERENCE RULES 
 

Name  Abbrev. Rule 

Conjunction Elimination CE p & q     p & q 
_____________     _____________ 
p            q 

Conjunction Introduction CI p 

q 
______________ 
p & q 

Modus Ponens MP p → q 

p 
______________ 
q 

Modus Tollens MT p → q 

~q 
______________ 
~p 

Hypothetical Syllogism HS p → q 

q → r 
______________ 
p → r 

Disjunctive Syllogism DS p  q      p  q 

~p         ~q 
____________     ______________ 
q            p 

Disjunctive Addition DA p            p 
____________     ______________ 
p  q     q  p 

Constructive Dilemma CD p → q 

r → s 

p  r 
_______________ 
q  s 

 

V. CONDITIONAL PROOF (CP) AND REDUCTIO (RAA) 
 

1. Any sentence whatsoever may be introduced as an assumption, with justification ‘PA-CP’ or 

‘PA-RAA’. (Introducing an assumption starts a subproof.) 
 

2. Every assumption must be discharged after it is introduced. (The subproof that started when 

the assumption was introduced ends on the line immediately before the assumption is 

discharged.) 

(1) A CP assumption is discharged at a line of the form p → q, where p is the assumption and 

q is the line immediately before the assumption is discharged. 

(2) An RAA assumption is discharged at a line of the form ~p, if the assumption is p, or p, if 

the assumption is ~p; the line immediately before the assumption is discharged must be of the 

form q & ~q. 
 

3. If a second assumption is introduced after a first assumption but before the first assumption is 

discharged, then the second assumption must be discharged before the first assumption is 

discharged. (So if two subproofs overlap, then one of them must be nested inside the other.) 
 

4. After an assumption is discharged, the lines from the introduction of the assumption to the line 

immediately before the assumption is discharged may no longer be used. 
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REVIEW OF CLASSICAL PROPOSITIONAL LOGIC: 

SEMANTIC TABLEAUX (TRUTH TREES) 
 

I. THE STEPS OF THE METHOD 
 

Step 1: List vertically the premises and the negation of the conclusion; this is the trunk of the 

tree. 
 

Step 2: Try to find an interpretation (i.e., an assignment of truth values to the sentence letters) 

on which all sentences in the trunk are true. To do this, successively check the complex 

sentences (i.e., those that consist neither of a single sentence letter nor of the negation of 

a single sentence letter) in the trunk and decompose them into simpler sentences by 

applying the following whole-line decomposition rules: 
 

p & q  p  q  p → q  p  q 

p  p q  ~p q  p ~p 

q        q ~q 
           

~(p & q)  ~(p  q)  ~(p → q)  ~(p  q) 

~p ~q  ~p  p  p ~p 

   ~q  ~q  ~q q 
 

 The Double Negation replacement rule may also be used to eliminate double tildes. 
 

Step 3: Stop if and only if: 
 

(1) Either every branch is closed (i.e., it contains, for some⎯maybe complex⎯sentence 

p, both p and ~p), in which case the sentences in the trunk are inconsistent and the 

argument is valid; 
 

(2) Or at least one open (i.e., not closed) branch is finished (i.e., all complex sentences 

in the branch have been checked), in which case the sentences in the trunk are 

consistent and the argument is invalid. 
 

 (Notation: Put ‘x’ below every closed branch and ‘o’ below every finished open 

branch.) 
 

Step 4: If the argument is invalid, a finished open branch provides a countermodel of the 

argument, namely an interpretation on which all premises are true and the conclusion is 

false: it is an interpretation which assigns ‘true’ to every sentence letter that occurs 

alone in a line of the branch, and assigns ‘false’ to every sentence letter whose negation 

occurs alone in a line of the branch. (You may assign ‘true’ or ‘false’ at your choice to 

any other sentence letter.) 
 

II. RULES OF THUMB 
 

1. Apply non-branching rules before branching rules. 
 

2. Decompose first sentences that result in closed branches. 
 

3. If the previous two rules do not apply, decompose first more complex sentences. 
 

4. Once a branch is closed, do not decompose any complex sentence in it. 
 

5. Once you find a finished open branch, stop: do not examine other branches. 
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INTRODUCTION TO MODAL LOGIC 
 

I. MOTIVATION 
 

Some obviously valid arguments cannot be proven to be valid in classical logic. For example: “It 

is impossible for you to run faster than light. Therefore, you will not run faster than light.” 
 

II. MODAL EXPRESSIONS 
 

1. Modal predicates (‘necessary’, ‘possible’, ‘impossible’, ‘contingent’, ‘non-contingent’) can be 

distinguished from modal adverbs (‘necessarily’, ‘possibly’,...), but we will use interchangeably, 

e.g., “necessarily, God exists”, “it is necessary that God exists”, and “‘God exists’ is necessary”. 
 

2. The sentence operators ‘’ (or ‘L’) and ‘’ (or ‘M’) stand for ‘necessarily’ and ‘possibly’ 

respectively, and can be prefixed to any sentence to form a sentence. So they can also be 

iterated: ‘A’ stands for “necessarily, A is possible”. 
 

3. Necessity and possibility are interdefinable: A  ~~A and A  ~~A. All modal 

operators can be defined in terms of possibility (or necessity): 

A is possible A (equivalently: ~~A) 

A is necessary ~~A (equivalently: A) 

A is impossible ~A (equivalently: ~A) 

A is contingent A & ~A (equivalently: ~(~A  A)) 

A is non-contingent ~(A & ~A) (equivalently: ~A  A) 
 

4. Modal operators are not truth-functional. For example: some true sentences are necessary 

(“2+2 = 4”) and some true sentences are not necessary (“I am a philosopher”). 
 

5. If it is assumed that every necessary sentence is true (some systems of modal logic do not 

assume this), then sentences can be classified as follows: 

 True False 

Non-contingent Necessary (thus possible) Impossible 

Contingent (thus possible) Contingently true Contingently false 
 

III. REPLACEMENT RULE 
 

Name Abbrev. Rule  Analogy (Tpw: p is true at world w) 

Modal Negation MN ~p  ~p 

~p  ~p 

~~p  p 

~~p  p 

 ~wTpw  w~Tpw 

~wTpw  w~Tpw 

~w~Tpw  wTpw 

~w~Tpw  wTpw 

The analogy is based on the intuitive idea that necessity amounts to truth at every (accessible) 

possible world and possibility amounts to truth at some (accessible) possible world. 
 

IV. TRANSLATIONS 
 

p is sufficient for (entails) q (i.e., q is necessary for p) (p → q) 

p and q are compatible (compossible, consistent) (p & q) 

p is compatible (compossible, consistent) with q (p & q) 

p and q are incompatible (inconsistent, contraries) ~(p & q) or (p → ~q) 

“If p is true, q must be true” is ambiguous between (p → q) (necessity of the consequence) and 

p → q (necessity of the consequent). 



PHILOSOPHY 512:                       PETER B. M. VRANAS 

MODAL LOGIC                                        HANDOUT 4 

 

 
 

THE SYSTEM K 
 

I. SEMANTICS 
 

1. A language is a set of sentence letters (A, B, C,...). An interpretation of a language is an 

ordered triple <W, R, v>, where: 

1. W is a non-empty set (the set of all (possible) worlds); 

2. R is a binary relation on W (the relation of accessibility between worlds: Rww stands 

for “w is accessible from w”); 

3. v is a function which assigns a truth value (either ‘true’ or ‘false’) to every sentence 

letter at every world (technically, to every sentence letter-possible world pair). 
 

2. Given the truth values at a world of sentences p and q, the truth values at that world of ~p, (p 

& q), (p  q), (p → q), and (p ↔ q) are determined by the standard truth tables for connectives. 
 

3. At a given world w: 

1. p is true exactly if p is true at every world accessible from w; 

2. p is true exactly if p is true at some world accessible from w. 

So, if no world is accessible from w, then, for every sentence p, p is true and p is false at w. 
 

4. An argument is (semantically) K-valid exactly if, for every interpretation of its language, at 

every world of the interpretation at which all premises are true the conclusion is also true. 
 

II. SEMANTIC TABLEAUX (TRUTH TREES) 
 

Each line of the tableau is: 

1. Either of the form p, i, where p is a sentence and i is natural number (such a line stands 

for the claim that the sentence p is true at world wi); 

2. Or of the form irj, where i and j are natural numbers (such a line stands for the claim 

that world wj is accessible from world wi). 
 

Step 1: List vertically the premises and the negation of the conclusion, each followed by ‘, 0’. 
 

Step 2: Check complex sentences and decompose them by using DN and: 
 

 (1) Indexed versions of classical (2) Two new whole-line 

 decomposition rules. E.g.: decomposition rules: 

p & q, i  p  q, i  p, i  p, i 

p, i  p, i q, i  irj  irj 

q, i     p, j  p, j 

(j new to the branch) 
 

• Do not check any necessity sentence that you decompose, but rather put ‘*j’ next to it 

every time you decompose it (for different natural numbers j). 

• The Modal Negation replacement rule may also be used. 
 

Step 3: Stop if and only if: 
 

1. Either every branch is closed (i.e., it contains, for some—maybe complex—sentence p 

and for some number i, both p, i and ~p, i), in which case the argument is valid; 

2. Or at least one open (i.e., not closed) branch is finished (i.e., all complex non-necessity 

sentences in the branch have been checked, and in the branch every possible application 

of the necessity decomposition rule has been made), in which case the argument is 

invalid. 
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THE SYSTEM K: NATURAL DEDUCTION 
 

I. MODAL VERSIONS OF THE CLASSICAL INFERENCE RULES 
 

Take any classical inference rule (namely CE, CI, MP, MT, HS, DS, DA, or CD). Prefix its 

premise(s) and its conclusion by (maybe different) modal prefixes⎯namely finite non-empty 

strings of boxes and/or diamonds⎯of the same length. What results is a modal version of the 

classical inference rule exactly if two conditions hold: 
 

(1)  Every box in the modal prefix of the conclusion is preserved in the modal prefix of every 

premise. 

(2)  Every diamond in the modal prefix of the conclusion is preserved in the modal prefix of 

exactly one premise. 
 

II. EXAMPLE: MODAL MODUS PONENS (MMP) 
 

Argument Instance of MMP? Argument Instance of MMP? 

(A → B) 

A 
__________________________ 
B 

 

Yes 
(A → B) 

A 
__________________________ 
B 

 

No: the diamond in the conclusion is 

preserved in two premises. 

(A → B) 

A 
__________________________ 
B 

 

Yes 
(A → B) 

A 
__________________________ 
B 

 

No: the diamond in the conclusion is 

preserved in no premise. 

(A → B) 

A 
__________________________ 
B 

 

Yes 
(A → B) 

A 
__________________________ 
B 

 

No: the box in the conclusion is not 

preserved in every premise. 

(A → B) 

A 
_______________________________ 
B 

 

Yes 
(A → B) 

A 
_______________________________ 
B 

 

No: not all modal prefixes have the 

same length. 

(A → B) 

A 
_____________________________________ 
B 

 

Yes 
(A → B) 

A 
_____________________________________ 
B 

 

No: the first box in the conclusion is 

not preserved in every premise. 

 

III. PREFIXED SUBPROOFS 
 

1. A CP or RAA subproof may be prefixed by a string of n ( 1) boxes, abbreviated as ‘n’. 
 

2. For a prefixed CP subproof, the CP assumption is discharged at a line of the form n(p → q), 

where p is the assumption [if the assumption is empty (a blank line), it is discharged at a line of 

the form nq] and q is the line immediately before the assumption is discharged. 
 

3. For a prefixed RAA subproof, the RAA assumption is discharged at a line of the form n~p, 

if the assumption is p, or np, if the assumption is ~p; the line immediately before the 

assumption is discharged must be of the form q & ~q. 
 

4. Inside a prefixed subproof, lines from outside the subproof may be used only by: 
 

Reiteration (Reit): If np is immediately outside a subproof prefixed by n, then p can be 

written immediately inside the subproof. 
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EXTENSIONS OF K 
 

I. CONSTRAINTS ON THE ACCESSIBILITY RELATION 
 

1. Extendability (η): wwRww 
 

2. Reflexivity (ρ): wRww 
 

3. Symmetry (σ): ww(Rww → Rww) 
 

4. Transitivity (τ): www((Rww & Rww) → Rww) 
 

5. Euclideanness (ε): www((Rww & Rww) → Rww) 
 

6. Universality (υ): wwRww 
 

ρ entails η. στ entails ε. ρστ is equivalent to ρε (and to ηστ). 
 

II. SEMANTICS FOR EXTENSIONS OF K 
 

1. Given a combination κ of constraints on the accessibility relation, a κ-interpretation of a 

language is an interpretation whose accessibility relation satisfies those constraints. For example, 

a στ-interpretation is an interpretation whose accessibility relation is symmetric and transitive. 
 

2. An argument Kκ-valid exactly if, for every κ-interpretation of its language, at every world of 

the interpretation at which all premises are true the conclusion is also true. 
 

3. Since every κ-interpretation is an interpretation but not vice versa, every K-valid argument is 

Kκ-valid but not nice versa: adding constraints increases (more precisely: does not decrease) the 

number of valid arguments. In this sense, the system Kκ is an extension of K. For example, Kρ is 

an extension of K. Similarly, Kρσ is an extension of Kρ, Kρστ is an extension of Kρσ, and so on. 
 

4. Some extensions of K are known by standard names: 

Extension of K Kη Kρ Kρσ Kρτ Kρστ=Kρε=Kυ 

Standard name D T (or M) B S4 S5 

In S4, any string of consecutive boxes can be reduced to a single box, and any string of 

consecutive diamonds can be reduced to single diamond. In S5, any string of consecutive boxes 

and/or diamonds can be reduced to the last symbol in the string. 
 

III. AXIOMATIC CHARACTERIZATION OF EXTENSIONS OF K 
 

A system (of modal logic) is a set of sentences (of a given language) closed under classical 

consequence. The system Kκ is the set of all and only those sentences (of a given language) that 

are true at every world of every κ-interpretation of the language. Alternatively, each system in 

the table below can be characterized by (i.e., as the smallest normal system containing every 

instance of) the corresponding axiom schema. [A system is normal exactly if it contains MN and, 

whenever it contains (p1 & … & pn) → p, it also contains (p1 & … & pn) → p (n  0).] 
 

System Accessibility relation Axiom schema Name Equivalent schema 

K No constraint (p → q) → (p → q) K — 

Kη Extendable (serial) p → p D — 

Kρ Reflexive p → p T p → p 

Kτ Transitive p → p 4 p → p 

Kσ Symmetric p → p B p → p 

Kε Euclidean p → p 5 p → p 



 

 

 

Similarly, Kρτ can be characterized by both axiom schemata T and 4, and so on. 
 

IV. SEMANTIC TABLEAUX (TRUTH TREES) 
 

Additional rules (they generate more applications of the necessity decomposition rule): 
 

Name η ρ σ τ ε 

 (i already (i already  irj irj 

Rule in the branch) in the branch) irj jrk irk 

 irj iri jri irk jrk 
 

For η, j is any natural number new to the branch. 
 

An open branch is finished only if in the branch every possible (non-redundant) application of 

the relevant additional rules has been made. 
 

V. NATURAL DEDUCTION 
 

1. Inference Rules: 
 

Accessibility relation Rule Name Rule Name 
 

Extendable (serial) 
p 
__________ 
p 

 

 
  

 

Reflexive 
p 
_________ 
p 

 

 
p 
__________ 
p 

 

 

 

Transitive 
p 
_______________ 
p 

 

 
p 
________________ 
p 

 

 

 

Symmetric 
p 
_______________ 
p 

 

 
p 
________________ 
p 

 

 

 

Euclidean 
p 
_______________ 
p 

 

 
p 
________________ 
p 

 

 

 

2. Prefixed Versions of the Inference Rules: 
 

Take any of the above inference rules and prefix both its premise and its conclusion by the same 

modal prefix . What results is the -version of the inference rule (named by prefixing the name 

of the rule by ). 
 

Examples: From A one can derive in one step A by applying , and from 

A one can derive in one step A by applying . 
 

3. Versions of Reiteration: 
 

-Reiteration (-Reit): If p is immediately outside a subproof prefixed by n, then p can be 

written immediately inside the subproof. 
 

-Reiteration (-Reit): If p is immediately outside a subproof prefixed by n, then p can be 

written immediately inside the subproof. 
 

-Reiteration (-Reit): If p is immediately outside a subproof prefixed by n, then np can be 

written immediately inside the subproof. 
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HOW TO CHOOSE A SYSTEM 
 

I. THE QUESTION: WHICH SYSTEM OF MODAL LOGIC IS CORRECT? 
 

1. An L-instantiation of a formula (i.e., a sentence) of a given language of propositional modal 

logic is the proposition expressed by the formula when (1) the sentence letters in the formula 

express propositions and (2) any boxes and diamonds in the formula are understood as the 

propositional operators of logical necessity and possibility respectively. E.g., an L-instantiation 

of the formula (A & B) is the proposition that it is logically necessary that both Al wins and it 

is metaphysically possible that if Bob runs then Al wins. This example shows that the sentence 

letters need not express distinct “atomic” propositions; if they do, then call the L-instantiation 

simple. E.g., a simple L-instantiation of the formula (A & B) is the proposition that it is 

logically necessary that both Al wins and Bob runs. One can similarly define (simple) M-

instantiations (corresponding to metaphysical necessity and possibility), and so on. 
 

2. A law of logical necessity is a formula with only true L-instantiations. (Similarly for 

metaphysical necessity etc.) A system S of modal logic is the correct system of logical necessity 

exactly if it coincides with the set of laws of logical necessity; i.e., exactly if: 

1. (Soundness:) Every S-valid formula is a law of logical necessity; 

2. (Completeness:) Every law of logical necessity is S-valid. 
 

II. LOGICAL NECESSITY 
 

1. A proposition P is logically necessary exactly if every proposition having the same logical 

form as P is true (informally, P is “true by logical form alone”). Two propositions have the same 

logical form if they are simple L- (or M-, etc.) instantiations of the same formula. E.g., the 

propositions that (P1) it is logically possible that the sky is yellow and that (P2) it is logically 

possible that the sky is green are simple L-instantiations of the formula A and thus have the 

same logical form. P2 is true (similarly for P1): some true proposition (e.g., the proposition that 

the sky is blue) has the same logical form as the proposition that the sky is green. 
 

2. Theorem: The correct system of logical necessity is S5.1 
 

3. Corollary of soundness: every L-instantiation of an S5-valid formula is logically necessary. 

Indeed: if F is an S5-valid formula and P is an L-instantiation of F, then F is also S5-valid and 

the proposition that P is logically necessary is an L-instantiation of F and thus is true. The 

converse of the corollary fails: some logically necessary propositions are not L-instantiations of 

any S5-valid formula. An example is the (true, and thus, by soundness) logically necessary 

proposition that it is logically possible that the sky is green (A is not S5-valid). 
 

 
1 To prove soundness—i.e., to prove that every S5-valid formula has only true L-instantiations—it is enough to 

prove that every formula which is an instance of axiom schema K, T, or 5 has only true L-instantiations. To prove 

this for 5 (the cases of K and T are similar), it is enough to prove that, for every proposition P, if the proposition that 

P is logically necessary is logically possible, then P is logically necessary. So take any proposition P and suppose 

that the proposition that P is logically necessary is logically possible. Then some true proposition Q has the same 

logical form as the proposition that P is logically necessary. Then there is a proposition R having the same logical 

form as P such that Q is the proposition that R is logically necessary. Then any proposition T having the same 

logical form as P has the same logical form as R (since R has the same logical form as P) and is thus true (since the 

proposition Q that R is logically necessary is true). So P is logically necessary. 



 

 

4. To the distinction between L-instantiations of S5-valid formulas and logically necessary 

propositions corresponds a distinction between two kinds of logical entailment of a proposition Q 

from a proposition P, depending on whether the proposition that if P is true then Q is true is an 

L-instantiation of an S5-valid formula (narrow logical entailment) or is logically necessary (wide 

logical entailment). E.g., the proposition P that it is logically impossible that the sky is green 

logically entails the proposition that the sky is green in the wide sense (because P is false and 

thus logically impossible) but not in the narrow sense. 
 

III. CONCEPTUAL NECESSITY 
 

1. A proposition is conceptually necessary (or analytic) exactly if it can be expressed by a 

sentence of a natural language which is true in virtue of the meanings of the words in it. 

Arguably, the proposition that if I am taller than you then you are not taller than me is 

conceptually but not logically necessary, and so is the proposition that my shirt is not green if it 

is yellow. 
 

2. Arguably, the proposition expressed by the sentence “if I am a bachelor, then I am male” is 

conceptually necessary. If that proposition can also be expressed by the sentence “if I am 

unmarried and I am male, then I am male”, then it is an L-instantiation of the S5-valid formula 

(U & M) → M and is thus also logically necessary. 
 

IV. METAPHYSICAL NECESSITY 
 

1. A proposition is metaphysically necessary exactly if (it is true and) it would have been true no 

matter how things might have been. Arguably, the proposition that if I am a human being then I 

am not a bank account is metaphysically but neither logically nor conceptually necessary. 
\ 

2. To the distinctions between logical, conceptual, and metaphysical necessity correspond 

distinctions between logical, conceptual, and metaphysical entailment: a proposition P logically/ 

conceptually/metaphysically entails a proposition Q exactly if it is logically/conceptually/ 

metaphysically necessary that Q is true if P is true. E.g., arguably the proposition that I am a 

human being metaphysically but neither logically nor conceptually entails the proposition that I 

am not a bank account. 
 

V. PHYSICAL AND NOMOLOGICAL NECESSITY 
 

1. A proposition is physically (nomologically) necessary exactly if it is entailed by the laws of 

physics (of nature). Since there are several kinds of entailment, there are several kinds of 

physical necessity. E.g., if it is a law of physics that only photons travel at the speed of light and 

it is metaphysically necessary that no photon is a composite object, then the proposition that no 

composite object travels at the speed of light is metaphysically but presumably not logically 

entailed by the laws of physics, and is then physically necessary in one sense but not in another. 
 

2. The above understanding of physical necessity does not reduce physical to e.g. logical 

necessity: it has the consequence that the laws of physics are physically necessary, but their 

physical necessity can hardly consist in the trivial fact that they are entailed by themselves. 
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REVIEW OF CLASSICAL QUANTIFIED LOGIC 
 

I. SYNTAX 
 

1. Logical symbols: connectives (~, &, , → , ↔), quantifiers (, ), variables (x, y, z,…), and 

punctuation symbols (left and right parentheses). 
 

2. Non-logical symbols: constants (a, b, c,…) and predicates (P, Q, R,…). Each predicate has a 

number of places. A language is a set of non-logical symbols. 
 

3. A term is a variable or a constant. An atomic formula consists of an n-place predicate followed 

by n terms. A formula is either an atomic formula or anything built up in finitely many steps 

from atomic formulas as follows: if F and G are formulas, then ~F, (F & G), (F  G), (F → G), 

(F ↔ G), xF, and xF (for any variable x) are formulas. (Outermost parentheses may be 

omitted.) 
 

4. A subformula of a given formula is any string of consecutive symbols within the given 

formula which is a formula. An occurrence of a variable x in a formula is bound exactly if it is 

part of a subformula beginning with ‘x’ or ‘x’ (otherwise, the occurrence of the variable in the 

formula is free). A sentence is a formula in which every occurrence of every variable is bound. 
 

II. SEMANTICS 
 

1. An interpretation of a language is an ordered pair whose first member is a non-empty set (the 

domain of quantification) and whose second member is a function which (1) assigns to every 

constant a member of the domain (the denotation of the constant) and (2) assigns to every n-

place predicate a set of ordered n-tuples of members of the domain (the extension of the 

predicate). 
 

2. An interpretation of a language assigns truth values to the sentences of the language as 

follows: (1) an atomic sentence is true (on the interpretation) exactly if the ordered n-tuple 

consisting of the denotations of the n constants following the predicate is in the extension of the 

predicate; (2) non-atomic sentences formed by using connectives are true or false as per the 

standard truth tables for connectives; and (3) a quantified sentence xF [respectively: xF] is 

true (on the interpretation) exactly if, for every [respectively: for some] member d of the domain, 

the sentence obtained by replacing every free occurrence of x in F with a constant denoting d is 

true (on the interpretation). 
 

III. TRANSLATIONS 
 

All A are B x(Ax → Bx) 

All A who are C are B x((Ax & Cx) → Bx) 

Only A are B x(Bx → Ax) 

Only A who are C are B x(Bx → (Ax & Cx)) 

All and only A are B x(Ax ↔ Bx) 

All and only A who are C are B x((Ax & Cx) ↔ Bx) 

No A are B x(Ax → ~Bx) 

No A who are C are B x((Ax & Cx) → ~Bx) 

Some A are B x(Ax & Bx) 

Some A who are C are B x((Ax & Cx) & Bx) 



 

 

 

IV. REPLACEMENT RULE 
 

Name Abbrev. Rule 

Quantifier Negation QN ~xF  x~F 

~xF  x~F 

~x~F  xF 

~x~F  xF 
 

V. WHOLE-LINE INFERENCE RULES 
 

1. The instance of xF and of xF with respect to the constant a is the formula obtained from F 

by replacing all free occurrences of x in F with a. 
 

2. A new constant is a constant that does not appear in any previous line of a proof or in the 

conclusion. 
 

Name  Abbrev. Rule 

Universal 

Instantiation 

 

UI 
 

From a universal sentence one can derive any instance of it. 

Existential 

Generalization 

 

EG 
 

An existential sentence can be derived from any instance of it. 

Existential 

Instantiation 

 

EI From an existential sentence one can derive any instance of it with 

respect to a new constant. 

Universal 

Generalization 

 

UG A universal sentence can be derived from a subproof that starts by 

introducing a new constant and ends with the instance of the 

universal sentence with respect to that constant. Restriction: Any 

constant that occurs in the universal sentence must not be 

introduced in the subproof. 
 

VI. SEMANTIC TABLEAUX (TRUTH TREES) 
 

1. The decomposition rules from classical propositional logic, DN, and the Quantifier Negation 

replacement rule may be used, as well as the following whole-line instantiation rules (Fx(a) is the 

result of replacing all free occurrences of the variable x in F with the constant a): 
 

xF  xF  xF 

Fx(a)  Fx(b)  Fx(a1) … Fx(an) Fx(b) 

(a is any 

constant) 

 (b is any constant 

new to the branch) 

 (a1,…, an are all the constants already in the branch, 

and b is any constant new to the branch) 
 

Do not check any universal sentence that you instantiate, but rather put ‘*a’ next to it, where a is 

the constant with respect to which you instantiate. Do this every time you instantiate the 

universal sentence (with respect to different constants). 
 

2. Steps 1-3 of the method are essentially the same as in classical propositional logic, except that 

now an open branch is finished exactly if (1) all complex non-universal sentences in the branch 

have been checked, and (2) all universal sentences in the branch have been (a) instantiated at 

least once, and (b) instantiated with respect to every constant in the branch. 
 

3. Extra rules of thumb: 

1. Instantiate existential sentences before universal ones. 

2. If possible, instantiate universal sentences with respect to existing (not new) constants. 

3. Use the branching existential instantiation rule only to avoid infinite trees. 
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TWO KINDS OF QUANTIFIERS 
 

I. MOTIVATION 
 

It seems that sometimes we quantify not only over existing objects: in “some famous Greek 

philosophers are dead or have not yet been conceived” we quantify over objects that do not 

currently exist, in “some fictional detective is smarter than every actual detective” we quantify 

over fictional in addition to actual objects, and in “no possible object is a round square” we 

quantify over all possible objects. 
 

II. NOTATION AND TERMINOLOGY 
 

Use ‘’ and ‘’ for the non-restricted (‘outer’, ‘possibilist’) universal and existential (or better: 

‘particular’) quantifiers respectively, which range over all objects, and use ‘e’ and ‘e’ for the 

restricted (‘inner’, ‘actualist’) universal and existential quantifiers respectively, which range over 

all (currently) existing objects. (The choice of symbols is motivated by the fact that non-

restricted quantifiers behave like classical quantifiers but for restricted quantifiers new rules are 

needed. The choice of the term ‘non-restricted’—rather than ‘unrestricted’—is motivated by the 

fact that totally unrestricted quantification is arguably paradoxical.) 
 

III. TRANSLATIONS 
 

Ex stands for “x exists”. (If identity is introduced, Ex can be replaced with ey(y = x).) 
 

English Translation Equivalent Translation 

All A are B x(Ax → Bx) — 

All existing A are B ex(Ax → Bx) x(Ex → (Ax → Bx)) 

Some A are B x(Ax & Bx) — 

Some existing A are B ex(Ax & Bx) x(Ex & (Ax & Bx)) 

Some fictional detective is smarter than 

every actual detective 
x((Fx & Dx) & 

ey(Dy → Sxy)) 

x((Fx & Dx) & 

y(Ey → (Dy → Sxy))) 
 

IV. TWO OBJECTIONS 
 

Objection 1: Non-restricted quantifiers make no sense because merely possible objects do not 

exist and thus one cannot quantify over them. 
 

Reply: Quantifying over merely possible objects does not commit one to the claim that such 

objects exist. “Some detective does not exist” should not be understood as “there exists a 

detective who does not exist”. 
 

Objection 2: The distinction between non-restricted and restricted quantifiers is a distinction 

without a difference, because everything (speaking non-restrictedly) exists, so non-restricted and 

restricted quantifiers range over the same objects. 
 

Reply: The metaphysical thesis that everything exists is controversial. Even if the thesis turns out 

to be true, and thus the distinction between non-restricted and restricted quantifiers turns out not 

to make a difference, the distinction is needed because logic should not prejudge controversial 

metaphysical issues. 
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FREE LOGIC 
 

I. SEMANTICS FOR RESTRICTED QUANTIFIERS 
 

1. An interpretation of a language is now an ordered triple: its new member is a (maybe empty) 

subset E of the domain. (The domain is the set of all objects; E is the set of all existing objects.) 

The extension of the existence predicate E  is always E, but the extensions of other predicates and 

the denotations of constants are not restricted to existing objects. (Hence the name ‘free logic’: 

logic free of existential assumptions. It is controversial whether having a property requires 

existing, but the semantics does not assume that it does, because logic should not prejudge 

controversial metaphysical issues. Adding a ‘negativity constraint’ to the effect that only existing 

objects have properties results in negative free logic.) 
 

2. A quantified sentence exF [respectively: exF] is true on an interpretation exactly if, for 

every [respectively: for some] member d of E, the sentence obtained by replacing every free 

occurrence of x in F with a constant denoting d is true on the interpretation. 
 

II. REPLACEMENT RULE FOR RESTRICTED QUANTIFIERS 
 

Name Abbrev. Rule 

Free Quantifier Negation FQN ~exF  ex~F 

~exF  ex~F 

~ex~F  exF 

~ex~F  exF 
 

III. INFERENCE RULES FOR RESTRICTED QUANTIFIERS 
 

Name Abbr. Rule Restrictions 

Free Universal 

Instantiation 

 

FUI exF 
___________________________ 

Ea → Fx(a) 

No restriction: 

a is any constant. 

Free Existential 

Generalization 

 

FEG Ea & Fx(a) 
___________________________ 

exF 

No restriction: 

a is any constant. 

Free Existential 

Instantiation 

 

FEI exF 
___________________________ 

Eb & Fx(b) 

 

b is a new constant. 

Free Universal 

Generalization 

 

FUG Subproof that starts by introducing a new 

constant b and ends with Eb → Fx(b) 
___________________________________________________________________________________________________ 

exF 

Any constant that occurs 

in F must not be intro-

duced in the subproof. 

 

Fx(a) is the result of replacing all free occurrences of the variable x in F with the constant a. 
 

IV. SEMANTIC TABLEAUX FOR RESTRICTED QUANTIFIERS 
 

The instantiation rules from classical quantified logic are replaced with the following rules: 
 

exF  exF  exF 
 

  ~Ea  

 

Fx(a)  Eb 

Fx(b) 

 Ea1 

Fx(a1) 

 

… Ean 

Fx(an) 

Eb 

Fx(b) 

(a is any 

constant) 

 (b is any constant 

new to the branch) 

 (a1,…, an are all the constants already in the branch, 

and b is any constant new to the branch) 
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QUANTIFIED MODAL LOGIC 
 

I. MOTIVATION 
 

Some obviously valid arguments cannot be proven to be valid in propositional modal logic or in 

classical quantified logic. For example: “It is possible that the number zero is immaterial. 

Therefore, it is possible that something is immaterial.” 
 

II. SEMANTICS 
 

1. An interpretation of a language is an ordered quadruple <W, R, D, v>, where (1) W is a non-

empty set (the set of all worlds), (2) R is a binary relation on W (the accessibility relation), (3) D 

is a non-empty set, the domain of the interpretation (the set of all objects), and (4) v is a function 

which (i) assigns to every constant a member of D (the denotation of the constant), (ii) assigns to 

every n-place predicate at every world a set of ordered n-tuples of members of D (the extension 

of the predicate at the world), and (iii) assigns to every member w of W a (maybe empty) subset 

Dw of D, the domain of the world w (the set of all objects that exist at w). 
 

2. The union of the domains of all worlds need not exhaust the domain of the interpretation: 

some (impossible) objects may not exist at any world. On the other hand, the domains of all 

worlds may be identical to the domain of the interpretation (constant-domain interpretation). The 

extension of the existence predicate E  at any world is identical to the domain of the world, but 

the extensions of other predicates at a world are not restricted to objects that exist at the world. 
 

3. An atomic sentence is true (on an interpretation) at a given world exactly if the ordered n-tuple 

consisting of the denotations of the n constants following the predicate is in the extension of the 

predicate at the world. Non-atomic sentences formed by using connectives or modal operators 

are true or false (on the interpretation) at a world as per the standard rules. 
 

4. On a given interpretation, for a given world w: 
 

1. xF [respectively: xF] is true at w exactly if, for every [respectively: for some] member 

of the domain of the interpretation, the sentence obtained by replacing every free 

occurrence of x in F with a constant denoting d is true at w; 

2. exF [respectively: exF] is true at w exactly if, for every [respectively: for some] 

member of the domain of w, the sentence obtained by replacing every free occurrence of 

x in F with a constant denoting d is true at w. 
 

III. TRANSLATIONS 
 

English sentences involving both quantifiers and modal expressions are often highly ambiguous. 
 

English Possible translations 

It is impossible for a number to 

be located in space 
x(Nx → ~Lx), x(Nx → ~Lx), 

x(Nx → ~Lx) 

Everything is necessarily material exMx, exMx, xMx 

Every mental process is possibly 

caused by a brain process 
ex(Mx → ey(By & Cyx)), 

ex(Mx → ey(By & Cyx)) 
 



 

 

IV. THE BARCAN AND BURIDAN FORMULAS 
 

Va- 

lid 

? 

Non-restricted 

versions 

 Restricted 

Versions 

 

Valid exactly if: 

 

 

Y 

E 

S 

xF → xF 

xF → xF 

Barcan 

Formulas 
exF →exF 

exF → exF 

Rww → Dw  Dw (contracting 

domains). I.e.: x(~Ex → ~Ex). 

xF → xF 

xF → xF 

Converse Barcan 

formulas 
exF → exF 

exF → exF 

Rww → Dw  Dw  (expanding 

domains). I.e.: x(Ex → Ex). 

xF →xF 

xF → xF 

Buridan 

formulas 
exF → exF 

exF → exF 

 

N 

O 
xF →xF 

xF → xF 

Converse Buridan 

formulas 
exF → exF 

exF → exF 

 

 

• To see intuitively which non-restricted versions of the above formulas are valid, recall 

that xPx is analogous to wxPxw (every object has the property P at every world) 

etc. (Then isn’t the box redundant? How does xPx differ from xPx? The latter is 

indeed about all possible objects, but says only that they have the property P at the actual 

world.) So xPx → xPx is invalid (i.e., not true at every world of every 

interpretation) “because” xwPxw → wxPxw is invalid in classical quantified logic. 
 

• To see intuitively why the restricted versions of the Barcan formulas are valid under the 

contracting domains condition, consider the temporal analogy: if all currently existing 

objects will always have property P (exPx) and no new objects will ever come into 

existence (x(~Ex → ~Ex)), then it will always be the case that all (then) existing 

objects have property P (exPx). Similarly for the restricted versions of the Converse 

Barcan formulas and the expanding domains condition. 
 

• To see that the expanding domains condition follows from the restricted versions of the 

Converse Barcan formulas, replace F with Ex to get: exEx → exEx. The antecedent 

is true, and the consequent is equivalent to the expanding domains condition. 
 

V. REMARK 
 

If a sentence or an argument in which some restricted quantifiers occur and the existence 

predicate does not occur is valid, then the corresponding sentence or argument in which all 

restricted quantifiers are replaced with the corresponding non-restricted ones is also valid. 
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ACTUALISM AND POSSIBILISM 
 

I. INTRODUCTION 
 

I could have failed to exist. So there is a world at which I do not exist, at which I am a non-

existent object. Moreover, I could have had a son. So there is a world at which I have a son. If 

this (possible) son of mine is distinct from every object that actually exists, then he is a non-

actual object. The actualism/possibilism debates concern the possibility, the existence, and the 

ontological status of non-existent and non-actual objects. (i) According to weak possibilism, non-

existent or non-actual objects are possible (I could have failed to exist; I could have had a son 

distinct from every object that actually exists); domain-inclusion actualism denies this. (ii) Ac-

cording to strong possibilism, non-existent or non-actual objects exist simpliciter—or have 

being, an ontological status ‘lesser’ than existence. Since by definition non-existent and non-

actual objects do not (actually) exist, strong possibilism relies on a distinction between existence 

simpliciter—or being—and (actual) existence, a distinction that actualism denies. 
 

II. WEAK POSSIBILISM & DOMAIN-INCLUSION ACTUALISM 
 

1. Weak possibilism comes in two main versions. Both versions can be formulated by “possibly, 

something does not actually exist”. 

• If the word ‘actually’ is used non-rigidly (so that it is redundant, and at every world ‘the 

actual word’ refers to that world), we get non-rigid weak possibilism: (1) x~Ex (“non-

existent objects are possible”). 

• If the word ‘actually’ is used rigidly (as I normally use it, so that at every world ‘the 

actual world’ refers to our world), we get rigid weak possibilism: (2) x~@Ex (“non-

actual objects are possible”). 

(1) does not entail (2), but (2) entails (1) if the accessibility relation is universal. 
 

2. Non-rigid weak possibilism should be hardly controversial: x~Ex follows (by Modal 

Existential Generalization) from (1*) ~Es (“possibly, it is not the case that Socrates exists”). 

[This is the gist of the ‘Classical Argument’; Plantinga apparently misses this.] 
 

3. Rigid weak possibilism is plausible: x~@Ex follows from (2*) ex~@Ex (“non-actual 

objects could have existed”), which in turn follows from two premises: (i) I could have had a son 

(exSx), and (ii) no object that actually exists could have been a son of mine (x(@Ex → 

~Sx)) [because any son of mine would have to originate from my sperm (x(Sx → Ox)), but 

no object that actually exists originates from my sperm (x(@Ex → ~Ox)), and nothing that does 

not originate from my sperm could have originated from my sperm (x(~Ox → ~Ox))]. 
 

4. Rigid weak possibilism entails⎯and is thus equivalent to⎯(2*) if everything could have 

existed (xEx); i.e., if the domain of the interpretation is the union of the domains of all 

accessible worlds. 
 

5. Rigid weak possibilism entails (and, if the accessibility relation is reflexive, is entailed by): 

(2) x~@Ex (“something does not actually exist”). (2) is materially⎯but not logically⎯ 

equivalent to: (1) x~Ex (“something does not exist”). So (1) is true if rigid weak possibilism is 

true. (1) should be distinguished from ex~Ex (“some existing object does not exist”), which is 

trivially false. [This corresponds to Bennett’s point that one needs non-restricted quantifiers in 

order to formulate (some versions of) actualism and possibilism.] 
 

6. Negating each possibilist claim yields an actualist claim (thick arrows indicate entailment): 
 



 

 

Possibilist claims Actualist claims 

Non-rigid  Rigid Non-rigid  Rigid 

(1*) ~Es 

(Possibly, Socrates 

does not exist) 

 (2*) ex~@Ex 

(Non-actual objects 

could have existed) 

(1A*) Es 

(Necessarily, 

Socrates exists) 

 (2A*) ex@Ex 

(Necessarily, every existing 

object actually exists) 

   ( given xEx)    ( given xEx) 

(1) x~Ex 

(Non-existent ob- 

jects are possible) 

( 

given 

) 

(2) x~@Ex 

(Non-actual objects 

are possible) 

(1A) xEx 

(Necessarily, 

everything exists) 

( 

given 

) 

(2A) x@Ex 

(Necessarily, everything 

actually exists) 

( given )   ( given ) ( given )   ( given ) 

(1) x~Ex 

(Something does 

not exist) 

 (2) x~@Ex 

(Something does 

not actually exist) 

(1A) xEx 

(Everything 

exists) 

 (2A) x@Ex 

(Everything 

actually exists) 

7. (2A)⎯and, given reflexivity, (2A)⎯amounts to the claim that the domain of the interpretation 

is included in the domain of the actual world, from which the claim⎯which amounts to 

(2A*)⎯follows that the domain of every (accessible) world is included in the domain of the 

actual world. So (2A*), (2A), and (2A) can be called domain-inclusion actualist claims. [The 

contrast between (1A) and (2A) corresponds to Bennett’s contrast between w-ism and @-ism.] 
 

8. (1A) should be rejected: it entails (1A*). If (2A*) is false, then (2A), (2A), and (1A) are false. So 

domain-inclusion actualists must reject (2*). Proxy actualists reject (2*) by claiming, e.g., that 

although I could not have had a son distinct from every object that actually exists, some actually 

existing abstract object could have been a son of mine (and thus could have been concrete). 
 

III. STRONG POSSIBILISM & NON-DOMAIN-INCLUSION ACTUALISM 
 

1. Strong possibilism comes in two kinds. Both can be formulated by the slogan “there are non-

actual objects” (or “there are non-existent objects”, in the non-rigid versions). 

• Classical possibilists understand the slogan as “non-actual objects have being”. 

• Lewisian possibilists understand the slogan as “non-actual objects exist simpliciter”. On this 

view, actual and non-actual objects have the same ontological status: both exist simpliciter. 

But actual objects exist at (i.e., are parts of) the actual world, while non-actual objects exist 

at other worlds. Lewis understands worlds as universes, objects like our universe. 
 

2. Non-domain-inclusion actualism is the thesis that non-actual objects do not exist simpliciter. 

Actualists typically (i) understand existence simpliciter as actual existence (something exists 

simpliciter exactly if it is part of our universe) and (ii) understand worlds as (actually existing) 

abstract representational devices—and thus distinguish our universe (which is what Lewis calls 

‘the actual world’) from the actual world (namely the device that represents our universe). To 

exist at a world is to be represented by the world as existing, not to be part of a universe. 
 

3. One can introduce a predicate E* for existence simpliciter and [pace Bennett] formulate 

Lewisian possibilism as x(E*x & ~@Ex) and non-domain-inclusion actualism as x(~@Ex → 

~E*x). The extension of E* at every world is the domain of the interpretation according to 

Lewisian possibilists, but is the domain of the actual world according to some actualists. 
 

4. One might argue that the notion of existence simpliciter is confused. Compare: once one 

realizes that propositions in general have different truth values at different worlds, one gives up 

the notion of truth simpliciter and replaces it with the notion of truth at a world. Similarly, once 

one realizes that objects in general exist at some worlds but not at others, arguably one should 

give up the notion of existence simpliciter and replace it with the notion of existence at a world. 

Of course one can define existence simpliciter as existence at the actual world or at some world, 

but then Lewisian possibilism comes out as trivially false or trivially true respectively. 
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SEMANTIC TABLEAUX AND NATURAL DEDUCTION 

FOR QUANTIFIED MODAL LOGIC 
 

I. SEMANTIC TABLEAUX FOR NON-RESTRICTED QUANTIFIERS 
 

Use the semantic tableau rules for propositional modal logic, as well as QN and the indexed 

versions of the instantiation rules for classical quantified logic: 
 

xF, i  xF, i  xF, i 

Fx(a), i  Fx(b), i  Fx(a1), i … Fx(an), i Fx(b), i 

(a is any 

constant) 

 (b is any constant 

new to the branch) 

 (a1,…, an are all the constants already in the branch, 

and b is any constant new to the branch) 
 

II. NATURAL DEDUCTION FOR NON-RESTRICTED QUANTIFIERS 
 

1. Use the natural deduction rules for propositional modal and classical quantified (see 2 below) 

logic, as well as the following modal versions of the inference rules for classical quantified logic: 
 

Name  Abbrev. Rule 

Modal 

Universal 

Instantiation 

 

MUI 

From a universal sentence prefixed by any modal prefix one can 

derive any instance of the universal sentence prefixed by the same 

modal prefix. E.g.: from xPx one can derive Pa. 

Modal 

Existential 

Generalization 

 

MEG 

An existential sentence prefixed by any modal prefix can be derived 

from any instance of the existential sentence prefixed by the same 

modal prefix. E.g.: from Pa one can derive xPx. 

Modal 

Existential 

Instantiation 

 

MEI 

From an existential sentence prefixed by any string of diamonds one 

can derive any instance of the existential sentence with respect to a 

new constant prefixed by the same string of diamonds. E.g.: from 

xPx one can derive Pb. 

Modal  

Universal 

Generalization 

 

MUG 

A universal sentence prefixed by any string of boxes can be derived 

from a subproof that starts by introducing a new constant and ends 

with the instance of the universal sentence with respect to that 

constant prefixed with the same string of boxes. Restriction: Any 

constant that occurs in the universal sentence must not be 

introduced in the subproof. 
 

2. Restriction on prefixed subproofs: any constant introduced (e.g., by FEI or MEI) in a prefixed 

subproof must not appear at the line where the assumption of the subproof is discharged. 
 

III. SEMANTIC TABLEAUX FOR RESTRICTED QUANTIFIERS 
 

Use the semantic tableau rules for propositional modal logic, as well as FQN and the indexed 

versions of the instantiation rules for free logic: 
 

exF, i  exF, i  exF, i 
 

~Ea, i 

 

Fx(a), i  Eb, i 

Fx(b), i 

 Ea1, i 

Fx(a1), i 

 

… Ean, i 

Fx(an), i 

Eb, i 

Fx(b), i 

(a is any  

constant) 

 (b is new to 

the branch) 

 (a1,…, an are all the constants already in the branch, 

and b is any constant new to the branch) 



 

 

IV. NATURAL DEDUCTION FOR RESTRICTED QUANTIFIERS 
 

Use the natural deduction rules for propositional modal logic and free logic (see II.2 above for a 

restriction), as well as the following modal versions of the inference rules for free logic: 
 

Name Abbrev. Rule (π is any modal prefix) Example 

Modal Free 

Universal 

Instantiation 

 

MFUI 
πexF 
__________________________________ 
π(Ea → Fx(a)) 

(a is any constant) 

exPx 
_____________________________________ 
(Ea → Pa) 

Modal Free 

Existential 

Generalization 

 

MFEG 
π(Ea & Fx(a)) 
_________________________________ 
πexF 

(a is any constant) 

(Ea & Pa) 
_________________________________________ 
exPx 

Modal Free 

Existential 

Instantiation 

 

MFEI 


nexF 
_______________________________________ 


n(Eb & Fx(b)) 

(b is a new constant) 

exPx 
____________________________________ 
(Eb & Pb) 

Modal Free 

Universal 

Generalization 

 

MFUG 

Subproof that starts by introducing a new 

constant b and ends with n(Eb → Fx(b)) 
___________________________________________________________________________________________________ 


nexF 

(any constant that occurs in F must not 

be introduced in the subproof) 

Subproof of 

(Eb → Pb) 
____________________________________ 
exPx 

 
 

THE ACTUALITY OPERATOR 
 

I. MOTIVATION 
 

How to translate “there is an accessible world at which everyone is poor who exists at that world 

but is rich at the actual world”? ex(Rx → Px) and ex(Rx → Px) will not do. Solution: 

introduce the actuality operator ‘@’ (‘actually’) and translate the sentence as ex(@Rx → Px). 
 

II. SYNTAX AND SEMANTICS 
 

1. For any formula F, @F is a formula (informally read as “actually, F”). 
 

2. On a given interpretation, for a given world w, @F is true at w exactly if F is true at the world 

designated as the actual world (specified by the interpretation). 
 

III. SEMANTIC TABLEAUX 
 

Take w# to be the actual world. New decomposition rules: 

@F, i  ~@F, i 

F, #  ~F, # 
 

IV. REPLACEMENT RULES                   V. INFERENCE RULES 
 

Name Abbr. Rule  Name Abbr. Rule 

Actuality Repetition AR @@F  @F  Necessity of 

Actuality 

NA @F 
__________________ 


n@F 


n~@F 

_____________________ 
~@F Actuality Negation AN ~@F  @~F 

Actuality 

Conjunction 

AC @(F & G)  

@F & @G 

 Necessity of 

non-actuality 

NN ~@F 
_____________________ 


n~@F 


n@F 

___________________ 
@F 
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EXISTENCE AND DESIGNATION 
 

I. THE QUESTION 
 

Is it the case that (Q) some terms refer to non-existent objects? (One might say no because there 

cannot be any non-existent objects, but this worry was addressed in Handout 12.) 
 

II. ARGUMENTS FOR Q 
 

1. Linguistic evidence: It seems that ‘Pegasus’ refers to Pegasus and that ‘dragons’ refers to 

dragons, although Pegasus and dragons do not exist. 
 

2. Analogy: One can worship, admire, postulate, fear non-existent objects; why not refer? 
 

III. OBJECTION 1 
 

It is inconsistent to claim that (1) ‘Pegasus’ refers to Pegasus, (2) if ‘Pegasus’ refers to Pegasus, 

then Pegasus exists, and (3) Pegasus does not exist; so the evidence (1)&(3) in favor of Q is 

suspect, since adding to it the plausible claim (2) leads to a contradiction. 
 

IV. REPLIES TO OBJECTION 1 
 

1. Reply 1: (2) relies on the general claim that (2*) if something refers to Pegasus, then Pegasus 

exists. But (2*) is self-defeating, since it itself refers to Pegasus, so it leads to the absurd 

conclusion that Pegasus exists. Response: One can deny that (2*) refers to Pegasus; indeed, a 

proponent of (2*) who accepts (3) must deny that (2*) refers to Pegasus. 
 

2. Reply 2: (2) just is the negation of (1)&(3), so of course adding (2) to (1)&(3) yields a 

contradiction. Affirming (2) is question-begging: it amounts to just denying the evidence 

(1)&(3), not to adducing an argument against it. Response: But similarly, affirming (1)&(3) 

amounts to just denying (2), so it is a stalemate. 
 

V. OBJECTION 2 
 

Sentences in which apparent reference to non-existent objects is made can be paraphrased so that 

the appearance vanishes. For example, “dragons do not exist” (~exDx) can be paraphrased as 

“no existing object has the property of being a dragon”, and “Pegasus does not exist” (apparently 

~Ep) can be paraphrased as “no existing object is the winged horse of Greek mythology”. 
 

VI. REPLIES TO OBJECTION 2 
 

Reply 1: It will not do to replace names with definite descriptions, given Kripke’s well-known 

objections to the description theory of names. Reply 2: Intuitively, “Pegasus is a pig” is false but 

“Pegasus has wings” is true; but replacing ‘Pegasus’ with a definite description leads to the result 

that both sentences are false. Reply 3: There is no problem with translating “Socrates does not 

exist” as ~ex(x = s), so those who advocate not translating “Pegasus does not exist” as ~ex(x = 

p) face a dilemma: either they must say that how we translate sentences depends on whether the 

sentences are true (unpalatable: we want to be able to translate “God does not exist” without 

knowing whether God exists), or they must give up constants in translations altogether (e.g., they 

must translate “Socrates does not exist” without using any constant). 
 

VII. SALMON’S ARGUMENT FOR Q 
 

Let ‘Noman’ refer to the individual that would have existed if the sperm from which I originate 

had fertilized the ovum from which you originate. ‘Noman’ refers to a non-existent object.  
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IDENTITY 
 

I. SYNTAX AND SEMANTICS 
 

1. New logical symbol: ‘=’, the identity sign. It is a two-place predicate, and thus it is used like 

every other predicate to form (atomic and non-atomic) formulas, but by convention ‘=tt ’is 

written as ‘(t = t)’ and ‘~(t = t)’ may be abbreviated as ‘(t  t)’, where t and t are any terms 

(i.e., variables or constants). (The parentheses may be omitted.) 
 

2. On a given interpretation, an atomic sentence a = b is true (at a given world) exactly if the 

constants a and b denote the same member of the domain of the interpretation. 
 

II. TRANSLATIONS 
 

There are at least two gods exey((Gx & Gy) & x  y) 

There are at least three gods exeyez(((Gx & Gy) & Gz) & ((x  y & y  z) & z  x)) 

There is at most one god exey((Gx & Gy) → x = y) 

There are at most two gods exeyez(((Gx & Gy) & Gz) → ((x = y  y = z)  z = x)) 

There is exactly one god ex(Gx & ey(Gy → y = x)) 

There are exactly two gods exey(((Gx & Gy) & x  y) & ez(Gz → (z = x  z = y))) 

The only immortal god is Zeus (Gz & ~Mz) & ex((Gx & ~Mx) → x = z) 
 

III. SEMANTIC TABLEAUX FOR IDENTITY 
 

Identity substitution  Identity invariance  A branch is closed if it contains a  a, i or 

both a = b, i and b  a, i. An open branch is 

finished only if it includes all possible (non-

redundant) applications of the two identity 

rules. F could be non-atomic, but this would 

make it harder to find finished open branches. 

Fx(a), i 

a = b, i [or b = a, i] 

  

a = b, i 

 

Fx(b), i 

(F is any atomic for- 

mula except a = b) 

 a = b, j 

(j already 

in the branch) 

 

 

IV. REPLACEMENT RULE FOR IDENTITY 
 

Name Abbrev. Rule Remark 

Identity Symmetry I Sym t = t  t = t This rule is redundant but convenient. 
 

V. INFERENCE RULES FOR IDENTITY 
 

Name Abbr. Rule Remarks 

Identity 

Reflexivity 

 

IR 
 
______________ 
a = a 

This rule can be used anywhere, even inside 

a prefixed subproof. (a is any constant.) 

Identity 

Substitution 

 

IS Fx(a) 

a = b [or b = a] 
_____________________________________ 
Fx(b) 

This rule says that some or all occurrences 

of a in F can be replaced with b, and also 

has modal versions. (F need not be atomic.) 

Necessity of 

Identity 

 

NI a = b              n(a  b) 
________________________                   ________________________ 


n(a = b)       a  b 

This rule is redundant (given IR and IS) but 

convenient. 

Necessity of 

Distinctness 

 

ND a  b              n(a = b) 
________________________                   ________________________ 


n(a  b)       a = b 

This rule is redundant (given IR and IS) if 

the accessibility relation is symmetric. 
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NON-RIGID DESIGNATORS AND DE RE MODALITY 
 

I. FOUR KINDS OF TERMS 
 

1. So far we have treated terms and predicates differently: an interpretation assigned to a 

predicate an extension at a world, but assigned to a constant a denotation not relative to a world. 

But some terms (referring expressions, designators) denote different objects at different worlds. 

E.g., ‘the 44th U.S. President’ denotes Obama at the actual world but McCain at some other 

world. Moreover, some terms (e.g., ‘the King of the USA’) denote nothing at some worlds. 
 

2. To say that term t denotes object o at world w is not to say that people at w standardly use t to 

denote o; it is rather to say that we use t to denote o when we talk about w. E.g., suppose that at 

some world w Plato has my name but I am called ‘Plato’. Since I just said that at w Plato has my 

name, I used ‘Plato’ to denote at w the object who is actually a Greek philosopher, not myself. 
 

3. Denotation at a world does not require existence at the world: if I say “consider a world w at 

which Plato does not exist”, at w ‘Plato’ denotes Plato although at w Plato does not exist. 
 

4. Besides variables (x, y, z,…) and constants (a, b, c,…), introduce terms of a third kind: 

descriptors (α, β, γ,…). An interpretation now assigns to constants and to descriptors objects 

(members of the domain of the interpretation) at worlds: it assigns to a constant the same object 

at every world, but it may assign to a descriptor different objects at different worlds and no 

object at some (or even at all) worlds. The truth value of an atomic formula at a given world 

depends on what any descriptors in the formula denote at that world; if some descriptor in an 

atomic formula denotes nothing at a given world, then the formula is false at that world. 
 

5. Say that (on a given interpretation) a constant or descriptor is (1) rigid exactly if it denotes the 

same object at every world at which it denotes something, is (2) non-rigid otherwise, is (3) total 

exactly if it denotes something at every world, and is (4) partial otherwise. All constants are 

rigid and total, but for descriptors there are four possibilities: 

Terms Total Partial 

Rigid ‘The smallest natural number’; ‘Plato’ ‘The zygote from which Plato originates’ 

Non-rigid ‘The number of elementary particles’ ‘The 44th U.S. President’; ‘Miss America’ 
 

II. DE DICTO AND DE RE MODALITY 
 

1. Sentences with both modal operators and non-rigid terms can be ambiguous. “The 44th U.S. 

President could have been a Republican” can be understood as (1) “at some possible world the 

44th U.S. President is a Republican” (e.g., because McCain wins the election), or as (2) “the 

person who actually is the 44th U.S. President at some possible world is a Republican” (e.g., 

because Obama could have had different political views). (If all terms are rigid and total, the two 

readings are logically equivalent, so the ambiguity does not matter.) If π stands for the 44th U.S. 

President, Rπ corresponds to the former (de dicto) reading; but how to formalize the latter (de 

re) reading, which says of a given object that it has the property of being possibly a Republican? 
 

2. (1) Can one formalize the de re reading as Ro, where o is a constant denoting Obama at 

every world? No: Ro is only materially (not logically) equivalent to “the 44th U.S. President 

has the property of being possibly a Republican” (at worlds at which no 44th U.S. President 

exists, the latter sentence is false, but Ro may be true). (2) One might use Russell’s theory of 

descriptions to formalize the de dicto/de re ambiguity as x((Px & Rx) & y(Py → y = x)) vs 

x((Px & Rx) & y(Ry → y = x)). But what about non-rigid terms that are not definite 

descriptions? (3) Better way: use predicate abstraction to represent complex properties. 
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PREDICATE ABSTRACTION 
 

I. THE GENERAL IDEA 
 

Predicate abstraction is a way of forming complex predicates. E.g., rather than translating the 

sentence “John is tall and happy” as the conjunction of “John is tall” and “John is happy” (Tj & 

Hj), introduce the predicate ‘being tall-and-happy’ (x(Tx & Hx): the property of being an x such 

that x is both tall and happy), and translate the sentence as “John has the property of being tall-

and-happy” (x(Tx & Hx)j: John is an x such that x is both tall and happy). Similarly, to translate 

the de re reading of the sentence “the President is possibly a Republican”, introduce the predicate 

‘being possibly a Republican’ (x(Rx): the property of being an x such that x is possibly a 

Republican) and translate the sentence as “the President has the property of being possibly a 

Republican” (x(Rx): the President is an x such that x is possibly a Republican). By contrast, 

the de dicto reading of the sentence is translated as “it is possible that the President has the 

property of being a Republican” (x(Rx); equivalently, R). 
 

II. SYNTAX AND SEMANTICS 
 

1. New logical symbol: ‘’, the abstraction quantifier. New way of forming formulas: if F is a 

formula, x is a variable, and t is a term (i.e., a variable, a constant, or a descriptor), then xFt is a 

formula (called an abstraction formula, and informally read as “the object actually denoted by t 

has the property of being an x such that F”). Every occurrence of x which is free in F is bound in 

xFt. [xF is called a predicate abstract and is informally read as “the property of being an x 

such that F”.] To increase readability, enclose F in parentheses; e.g., x(Rx)c. 
 

2. On a given interpretation, for a given world w: (1) if t denotes nothing at w, then xFt is false 

at w, and (2) if t denotes object o at w, then xFt is true at w exactly if Fx(a) is true at w, where a 

is a constant that denotes o at every world. (So, e.g., x(~Ex)t is false but ~x(Ex)t is true at 

worlds at which t does not denote.) 
 

III. EXAMPLES 
 

Dx: x is a Democrat; Rx: x is a Republican; Axy: x admires y; : the U.S. President; : the French 

President; o: Obama; s: Sarkozy. 
 

English Possible translations 

The U.S. President is a Democrat 

but could have been a Republican 
(1) D & R (i.e.: x(Dx) & x(Rx)) 

(2) x(Dx & Rx) 

The U.S. President might have 

admired someone 
(1) xAx [i.e.: xy(Ayx), or also yx(Ayx)] 

(2) xAx [i.e.: xy(Ayx)] 

(3) y(xAyx)) [i.e.: xy(Ayx)] 

(4) y(xAyx)) 

The U.S. President might have 

admired the French President 
(1) A [i.e : x(y(Axy))] 

(2) x(Ax) [i.e.: x(y(Axy))]; true iff Ao 

(3) y(Ay) [i.e.: y(x(Axy))]; true iff As 

(4) x(y(Axy)) [i.e.: y(x(Axy))]; true iff Aos 
 

The semantic notions of a descriptor  (1) denoting and (2) denoting locally rigidly (i.e., denoting 

the same object at each accessible world at which  denotes) can be expressed syntactically by 

(1) x(Ex)  x(~Ex) (equivalently, x(x = x), abbreviated as D) and (2) x((D → x = )). 
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SEMANTIC TABLEAUX AND NATURAL DEDUCTION 

FOR PREDICATE ABSTRACTION AND DESCRIPTORS 
 

I. SEMANTIC TABLEAUX 
 

A branch containing , i (for a descriptor ) need not be closed. The universal and existential 

instantiation rules, and the identity invariance rule, may not be used with respect to descriptors. 

The identity substitution rule may be used, but only for atomic formulas F. New rules ( is any 

descriptor): 
 

Designator introduction  Abstraction instantiation 

Atomic sentence 

in which  occurs, i 

 

xF, i 

  

xFa, i 

 

~xFa, i 

 = a, i 

xF, i 

 = a, i 

~xF, i 

 = b, i  = b, i  Fx(a), i ~Fx(a), i Fx(a), i ~Fx(a), i 

(b is any constant new to the branch)  (a is any constant) (a is any constant) 
 

To say that a descriptor ‘occurs’ in an atomic sentence is to say that the descriptor is one of the n 

terms that follow the n-place predicate. The designator introduction rule may be used only if no 

line equating (at world i)  with a constant already appears on the branch. The premise of the 

designator introduction rule is not checked when the rule is used, but the (non-identity) premise 

of the abstraction instantiation rule is checked when the rule is used. 
 

II. REPLACEMENT RULES 
 

Name Abbrev. Rule Remarks 
 

Abstraction Replacement for Constants 
 

ARC 
 

xFa  Fx(a) 
F is any 

formula. 
 

Abstraction Replacement for Variables 
 

ARV 
 

xFy  Fx(y) 
F is a formula with no 

bound occurrence of y. 
 

Abstraction Replacement for Descriptors 
 

ARD 
 

xF  Fx() 
F is atomic with at least 

one free occurrence of x. 
 

III. INFERENCE RULES 
 

The inference rules UI, EG, EI, UG, their free and modal variants, and the identity inference 

rules IR, NI, and ND may not be used with respect to descriptors. The identity substitution rule 

IS may be used for formulas without modal operators. New inference rules ( is any descriptor): 
 

Name Abbrev. Rule  Remarks 

Designator 

Introduction 

 

DI 
Atomic sentence 

in which  occurs 
__________________________________________ 
 = b 

 

xF 
_____________ 
 = b 

This rule may be used only if there is 

no previous available line equating  

with a constant. (b is a new constant.) 

Abstraction 

Instantiation 

 

AI 
 = a 

xF 
_____________ 
Fx(a) 

 = a 

~xF 
________________ 
~Fx(a) 

This rule also has modal versions. Its 

second part is redundant given the first 

part of AG. (F is any formula.) 

Abstraction 

Generalization 

 

AG 
 = a 

Fx(a) 
_____________ 
xF 

 = a 

~Fx(a) 
________________ 
~xF 

This rule also has modal versions. Its 

second part is redundant given the first 

part of AI. (F is any formula.) 
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DEFINITE DESCRIPTIONS 
 

I. THE GENERAL IDEA 
 

Definite descriptions are phrases of the form ‘the so-and-so’ (e.g.: ‘the 44th U.S. President’). If 

one translates definite descriptions with descriptors, then some obviously valid arguments have 

invalid translations. For example, the argument from “Jim is the man who sang” to “Jim sang” is 

obviously valid, but (translating ‘the man who sang’ as ) the translated argument from j =  to Sj 

is invalid. To remedy this problem, translate ‘the man who sang’ as ɿx(Mx & Sx) (‘the x such that 

x is a man and x sang’), and translate “Jim is the man who sang” as j = ɿx(Mx & Sx). 
 

II. SYNTAX AND SEMANTICS 
 

1. New logical symbol: ‘ɿ’, the definite description quantifier. New way of forming terms: if x is 

a variable and F is a formula, then ɿxF is a term (informally read as ‘the x such that F’). Every 

occurrence of x which is free in F is bound in any formula in which ɿxF occurs. To increase 

readability, enclose ɿxF in parentheses; e.g., T(ɿxMx)(ɿyWy) (“the man is taller than the woman”). 
 

2. Given that now terms are defined by referring to formulas, and that formulas are defined by 

referring to terms (because, e.g., if F is a formula, x is variable, and t is any term—namely a 

variable, a constant, a descriptor, or a definite description—then xFt is a formula), terms and 

formulas are defined together. An atomic formula can contain definite descriptions; e.g., 

T(ɿxMx)(ɿyWy) is atomic, since it consists of a two-place predicate followed by two terms. 
 

3. On a given interpretation, ɿxF denotes object o at world w exactly if o is the only member d of 

the domain such that, it a is a constant denoting d at every world, then Fx(a) is a sentence true at 

w. The object o denoted at w need not exist at w; e.g., ‘the individual who would have resulted if 

the sperm from which I originate had fertilized the egg from which my brother originates’. 
 

III. TRANSLATIONS 
 

Sentences with definite descriptions can be translated without ɿ, but translations with ɿ are often 

much shorter. Examples (Cxy: x creates y; Pxy: x is more powerful than y; m: Mars; v: Venus): 
 

English Translation with ɿ Translation without ɿ 

The creator of Mars is the creator of 

Venus 

ɿxCxm = ɿxCxv x((Cxm & Cxv) & 

y((Cym  Cyv) → y = x)) 

The creator of Mars has the property 

of being possibly more powerful than 

the creator of Venus 

x(PxɿyCyv) 

ɿzCzm 

x(y(Cym  y = x) & 

z(Pxz & w(Cwv  w = z))) 

The creator of the creator of Mars has 

the property of being possibly more 

powerful than the creator of Venus 

x(PxɿyCyv) 

ɿzCz(ɿwCwm) 

xy((z(Czm  z = y) & z(Czy  z = 

x)) & z(Pxz & w(Cwv  w = z))) 

 

IV. NATURAL DEDUCTION 
 

The rules that apply to descriptors apply to definite descriptions. New replacement rule: 

Name Abbr. Rule 

Description 

Replacement 

 

DR ɿxF = a  Fx(a) & z(Fx(z) → z = a), where z is a variable that does 

not occur in F or in the sentence in which the replacement takes place. 

Example: y(ɿxCxy = g)  y(Cgy & z(Czy → z = g)) (“God is the creator of everything”). 
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QUINE’S CRITIQUE OF QUANTIFIED MODAL LOGIC 
 

I. QUINE’S CRITIQUE 
 

0. Preliminaries. Quine attacks systems of quantified modal logic containing sentences that (i) 

have modal operators prefixed to open formulas (e.g., xFx) and (ii) are not equivalent to 

sentences that have modal operators prefixed only to closed formulas (e.g., xFx). Quine 

assumes that quantification is understood objectually and that necessity is understood as 

analyticity (a notion whose coherence he grants for the sake of argument, despite his well-known 

misgivings about it). 
 

1. Quine’s first thesis is that identity substitution fails even for constants: the argument from  

(a = a) and a = b to (a = b) is invalid. This is not to deny that the rule of inference IS is 

sound for (i.e., yields only results validated by the semantics of) certain formal systems; it is 

rather to say that the proposition expressed by “the sentence a = b is analytic” can be (in fact, is) 

false even if the propositions expressed by “the sentence a = a is analytic” and by a = b are true. 

(Quine’s point is obscured by the fact that his relevant examples involve descriptions.) 
 

2. Quine’s second thesis is that, granting an (objectual) understanding of quantification and an 

understanding of necessity as analyticity, no understanding of sentences like xFx 

automatically follows. For what does it mean to say that something is such that Fx holds 

analytically of it? Traditional accounts of analyticity apply to sentences, and do not even purport 

to explain what it is for an open formula to hold analytically of an object. 
 

3. Quine’s third thesis is that the obvious ways of trying to make sense of sentences like xFx 

do not work. 
 

 3a. One might suggest that Fx holds of an object exactly if the sentence Fa is true, where: 

• a is any constant denoting the object [i.e., x(x = a → (Fx  Fa)) is an axiom]. But 

given the failure of identity substitution (Quine’s first thesis), in general Fa will be true 

for some but not all constants a denoting the object. E.g., if h (for ‘Hesperus’) and p (for 

‘Phosphorus’) denote the planet Venus, (Lh → Lh) is true but (Lh → Lp) is false 

(with Lx: there is life on x), so (Lh → Lx) does not hold of Venus (or, similarly, of any 

other object). But then on the present suggestion x(Lh → Lx) is false, and existential 

generalization (from (Lh → Lh)) fails. 

• a is a privileged constant denoting the object. But how to make sense of a constant being 

privileged? 
 

3b. One might alternatively suggest that Fx holds of an object exactly if being F is an 

analytic consequence of being P, where: 

• P is any condition uniquely specifying the object [i.e., x(x = ɿyPy → (Fx  y(Py 

→ Fy))) is an axiom]. But in general being F is an analytic consequence of being P for 

some but not all conditions P uniquely specifying the object. E.g., being an even prime 

and being the number of my hands both uniquely specify the number two, but being an 

even prime is an analytic consequence of the former and not of the latter, so Fx (with 

Fx: x is an even prime) does not hold of the number two (or, similarly, of any other 

object). But then on the present suggestion xFx is false. 

• P is a privileged condition uniquely specifying the object. But how to make sense of a 

description being privileged? Nevertheless, Quine thinks that this suggestion is ‘the only 

hope’ of making sense of sentences like xFx, and that quantified modal logic is thus 



 

 

committed to Aristotelian essentialism: the thesis that certain ways of uniquely specifying 

an object are favored as somehow better revealing the ‘essence’ of the object. Quine 

concludes: “so much the worse for quantified modal logic. By implication, so much the 

worse for unquantified modal logic as well; for, if we do not propose to quantify across 

the necessity operator, the use of that operator ceases to have any clear advantage over 

merely quoting a sentence and saying that it is analytic.” 
 

II. SOME (POOR) RESPONSES TO QUINE 
 

Response 1: The development of possible-words semantics shows that one can make sense of 

sentences like xFx. Reply: ‘semantics’ as a mathematical theory of models yields no 

‘semantics’ in the sense of a philosophical account of meaning and thus yields no response to 

Quine’s claim that systems of quantified modal logic are intuitively unintelligible (unless one 

assumes essentialism). 
 

Response 2: Quantified modal logic is not committed to essentialism because no sentence 

expressing essentialism is derivable in the common systems. Reply: Quine claims that quantified 

modal logic is committed to essentialism in the sense that essentialism is the only way of making 

sense of certain sentences. In Quine’s words: “I’ve never said or, I’m sure, written that 

essentialism could be proved in any system of modal logic whatsoever.” 
 

III. LESSONS FROM QUINE’S CRITIQUE 
 

The basic lesson is that different formalisms are appropriate for conceptual (or logical) and for 

metaphysical necessity: identity substitution for constants holds for the latter but not for the 

former, and quantifying into modal operators probably makes sense for the latter but not for the 

former. This lesson has yet to be widely learned. 
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INDEX OF REPLACEMENT AND INFERENCE RULES 
 

Abbrev. Name of rule Kind of rule Handout 

Abs Absorption Replacement 1 

AC Actuality Conjunction Replacement 13 

AG Abstraction Generalization Inference 18 

AI Abstraction Instantiation Inference 18 

AN Actuality Negation Replacement 13 

AR Actuality Repetition Replacement 13 

ARC Abstraction Replacement for Constants Replacement 18 

ARD Abstraction Replacement for Descriptors Replacement 18 

ARV Abstraction Replacement for Variables Replacement 18 

Assoc Association Replacement 1 

CD Constructive Dilemma Inference 1 

CE Conjunction Elimination Inference 1 

CI Conjunction Introduction Inference 1 

Comm Commutation Replacement 1 

DA Disjunctive Addition Inference 1 

DeM De Morgan’s Law Replacement 1 

DI Designator Introduction Inference 18 

Dist Distribution Replacement 1 

DN Double Negation Replacement 1 

DR Description Replacement Replacement 19 

DS Disjunctive Syllogism Inference 1 

EG Existential Generalization Inference 8 

EI Existential Instantiation Inference 8 

Equiv Material Equivalence Replacement 1 

Exp Exportation Replacement 1 

FEG Free Existential Generalization Inference 10 

FEI Free Existential Instantiation Inference 10 

FQN Free Quantifier Negation Replacement 10 

FUG Free Universal Generalization Inference 10 

FUI Free Universal Instantiation Inference 10 

HS Hypothetical Syllogism Inference 1 

Impl Material Implication Replacement 1 

IR Identity Reflexivity Inference 15 

IS Identity Substitution Inference 15 

I Sym Identity Symmetry Replacement 15 

MEG Modal Existential Generalization Inference 13 

MEI Modal Existential Instantiation Inference 13 

MFEG Modal Free Existential Generalization Inference 13 

MFEI Modal Free Existential Instantiation Inference 13 

MFUG Modal Free Universal Generalization Inference 13 

MFUI Modal Free Universal Instantiation Inference 13 

MMP Modal Modus Ponens Inference 5 

MN Modal Negation Replacement 3 

MP Modus Ponens Inference 1 

MT Modus Tollens Inference 1 

MUG Modal Universal Generalization Inference 13 

MUI Modal Universal Instantiation Inference 13 

NA Necessity of Actuality Inference 13 

NC Negated Conditional Replacement 1 

ND Necessity of Distinctness Inference 15 

NI Necessity of Identity Inference 15 

NN Necessity of non-actuality Inference 13 

QN Quantifier Negation Replacement 8 

Taut Tautology Replacement 1 

Trans Transposition Replacement 1 

UG Universal Generalization Inference 8 

UI Universal Instantiation Inference 8 
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