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Abstract

The Ground-Holding Problem (GHP) is defined as follows. Given a network of air-
ports (including flight schedules with connections), how much must each flight be held
on the ground before it takes off so that the total (ground plus airborne) delay cost for
all flights is minimized? This problem is of considerable practical importance, given
that (a) increasing congestion causes delay costs of the order of the total losses of the
U.S. airline industry, and (b) other solutions to the congestion problem are unlikely
to be implemented soon. Previous research on the GHP has been restricted to the
single-airport case, neglecting thus “network effects” resulting from the propagation
of delays between successive flights performed by the same aircraft. In this thesis the
multi-airport GHP is dealt with for the first time. Both static and dynamic versions
of the problem are examined. Several pure 0-1 integer programming formulations
are given. These formulations capture the essential aspects of the problem while be-
ing remarkably simple, and are sufficiently flexible to accommodate various degrees
of modeling detail, including: imposing airborne delays by means of en route speed
-reductions, cancelling flights, and having interdependent departure and arrival capac-
ities by controlling runway use. The simplicity of the formulations makes large-scale
GHPs tractable: extensive numerical results, achieved in reasonable computation
times, are presented for networks with as many as 6 airports and 3000 flights. It is
found that solving single-airport GHPs for the individual airports results in highly
infeasible solutions for the network problem, and that optimal multi-airport ground
holds can result in significant cost savings compared to heuristics approximating, to
some extent, current ground-holding practice.
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Chapter 1

Introduction.

This introductory chapter consists of four sections. Section 1.1 deals with the moti-
vation for this thesis, namely the air traffic congestion problem in major American
and European airports. It is shown that the problem is very serious and that it
is expected to get worse. Section 1.2 describes possible solutions to the congestion
problem. It is shown that long- and medium-term solutions are subject to signifi-
cant implementation difficulties, while short-term solutions, which consist primarily
of ground-holding policies, look much more promising. Section 1.3 formulates the
Ground-Holding Problem (GHP), which is the topic of this thesis. Current ground-
holding practice is described and previous research on the GHP is reviewed. Finally,
Section 1.4 gives an overview of the organization and a preview of the main results

of the thesis.

1.1 Motivation: the congestion problem.

Congestion is becoming increasingly acute in major American and European airports.
This is because demand for airport use has been increasing quite rapidly during recent
years while airport capacity has been more or less stagnating. In the United States, for
instance, the number of commercial jet operations increased by about 27% between
1978 and 1988, while no new major commercial airport has been developed since 1974

(2, pp. 204, 220].
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Congestion results in ground and airborne delays. Ground delays occur, e.g., when
an aircraft is ready to depart but is not allowed to do so because there is a departure
queue. Airborne delays can take the form of an en route speed reduction or of circling
in the air in the vicinity of the destination airport because there is an arrival queue.
It should be noted that delays arise not only because of limited airport capacities but

also because of congestion in terminal area and en route airspace [3].

Delays create direct and indirect costs. The direct costs are incurred by the
airline companies. Direct costs from ground delays include crew, maintenance, and
depreciation costs, while direct costs from airborne delays include, in addition, fuel
and safety costs. The indirect costs are incurred primarily by the passengers, and
are basically opportunity costs. There are also some indirect costs to the airline
companies, due to the fact that excessive delays may cause some passengers to refrain

from future air travel.

1.1.1 The congestion problem is important.

The importance of the congestion problem is evidenced by the following figures. In
1991, the total losses of the U.S. airline industry were about $2 billion; in 1990, they
were about $2.5 billion. On the other hand, the total yearly direct delay costs due
to congestion are estimated to be about $2 billion. This number is a rough estimate,
but there is agreement that the costs are of the order of billions of dollars. If one adds
.to these direct costs the indirect opportunity costs to the passengers, one can easily
arrive at a total cost of about $6 billion. European airlines are in a similar plight [5,

p- 8]. It is thus clear that congestion is a problem of undeniable significance.

The problem is exacerbated by the fact that congestion is concentrated in rela-
tively few major airports. Although there are about 400 U.S. airports with towers
to provide air traffic control, the 27 largest of them® account for 57% of total jet

operations and incurred a 26% increase in such traffic between 1978 and 1988. At

!Defined as those that averaged more than 275 commercial Jet operations per day in 1978 [2, p.
205).
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present, 21 of these 27 major airports experience more than 20,000 hours of annual

flight delays.

1.1.2 Dire predictions.

Not only is the congestion problem severe, it is also expected to get worse. The Federal
Aviation Administration (FAA) projects that the number of operations (arrivals plus
departures) by major domestic commercial carriers will increase by one-third between
1988 and 2000. This projection is based on an average annual growth rate of 2.5%,
which corresponds to the projected growth of the overall economy and is slightly lower
than the growth experienced during the last decade [2, p. 215]. Moreover, the FAA
estimates that, by 1997, the 33 airports appearing in Table 1.1 will exceed 20,000
hours of annual delays [2, p. 217].

On the other hand, as will be explained in the next section, no appreciable increase

in capacity is expected to be realized. What can be done then?

1.2 Possible solutions to the congestion problem.

The measures that can be undertaken to alleviate congestion depénd on the time
horizon under consideration [3]. Long-term approaches have a planning horizon of
5 to 10 years and include the construction of new airports, the construction of new

fuﬁwdys at éﬁsting aiﬂrprorté, aﬁd "the "imprmrrem;nt of Air Traffic Control (ATC)
technologies. Medium-term approaches have a planning horizon of 6 months to 2
years and include the modification of the temporal pattern of aircraft flow in order
to eliminate periods of “peak” demand (e.g., by means of congestion pricing), and \
the use of larger aircraft. Short-term approaches have a planning horizon ranging
from a few minutes to a whole day, and include, most importantly, ground-holding
policies. The above approaches will be described now in more detail. It will be seen
that long- and medium-term solutions are unlikely to be implemented in the U.S. to

a significant extent in the foreseeable future, whereas short-term solutions appear to

13



AREA AIRPORT

Northeast | Boston Logan

New York City: Kennedy, LaGuardia, Newark
Pittsburgh

Philadelphia

South Washington: National, Dulles
Charlotte

Nashville

Memphis

Atlanta

Orlando

Miami

Dallas-Fort Worth
Houston: Hobby and Houston Intercontinental
Midwest | Cleveland

Columbus

Cincinnati

Detroit

Chicago O’Hare

St. Louis

Minneapolis

West Salt Lake City

Las Vegas

Phoenix
Seattle-Tacoma
San Fransisco
San Jose

Los Angeles: Los Angeles International and Ontario
Honolulu

Table 1.1: The 33 U.S. airports which are expected to exceed 20,000 hours of an-
nual delays by 1997 [2, p. 217]. Boldfaced airports are currently the most heavily
congested.
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hold significant potential for handling congestion.

1.2.1 Long-term solutions.
Construction of new airports.

Although the federal government distributes funds for airport development, the FAA
has little direct control over decisions to expand airport capacity, which are made
at the local level [2, p. 218]. At the local level, however, there is usually significant
community opposition to the noise that would result from constructing new airports
or from expanding existing ones. Moreover, as far as expansion of major congested
airports is concerned, in addition to the community opposition to noise there are the
obstacles of limited space and high costs, since most such airports are located in large

metropolitan areas.

Given this situation, as was pointed out above, no new major commercial air-
port has been developed since 1974. The only airport which is expected to provide
substantial additional capacity during the 1990s is the one nearing completion at
Denver. New airports are being considered in Los Angeles, Chicago, and Boston, but

are unlikely to be operational by 2000 [2, p. 220].

Construction of new runways at existing airports.

Building new runways or expanding existing ones is the solution of choice for the —

FAA. At first glance, this solution seems hopeful: 50 of the top 100 airports have
plans for additional runway capacity. A closer look, however, reveals difficulties.
First, currently congested airports, such as those in New York, Boston, Washington,
D.C. (National), and San Fransisco, do not have plans for new runways. Second,
and more important, FAA senior officials express considerable scepticism about the
realization of the existing plans, again because of community opposition to noise [2,

pp. 220-1].
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Inprovement of Air Traffic Control (ATC) technologies.

The focus now shifts to solutions that aim at improving the use of existing capacity
rather than creating new capacity. During poor weather, delays increase quickly
because instrument flight rule (IFR) conditions are applied, and these require greater
spacing of aircraft than do visual flight rule (VFR) conditions. Use of IFR rather
than VFR can reduce airport capacity by as much as 50% [2, p. 221]. Adopting less
stringent ATC rules could increase peak capacity during inclement weather by up to
40% at congested airports such as Boston and San Fransisco. The challenge, however,
is to relax ATC rules without compromising safety. This can be done by introducing
new radars with shorter response times and by developing new procedures for aborted

landings to minimize the risk of midair collisions.

Since 1981 the FAA has been pursuing the National Airspace System Plan (NAS
Plan), with the aim to replace outdated technology in the ATC system. The NAS
Plan was originally promulgated as a 10-year, $12-billion program, but now is a
multiyear $27-billion capital improvement program. The FAA is optimistic that major
improvements will begin appearing in the next few years. There are, however, grounds
for scepticism. Most components of the NAS Plan have been delayed for a variety of
reasons, and the original contract for one subsystem, the Microwave Landing System,
was cancelled by the FAA because tests did not meet FAA specifications. It appears
_ that the new technologies may not become available within the near future [2, pp.

222-4).

1.2.2 Medium-term solutions.
Congestion pricing for runways.

Congestion usually occurs only during peak periods (typically in the morning and
early evening), rather than throughout the day. In general, however, landing fees do
not vary with demand, but are calculated according to aircraft weight. Economic
analyses [2, p. 226] indicate that, if the landing fee for a period of the day were

to increase, delays would be reduced considerably, although some schedule frequency
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would be lost, because some direct service would be substituted for connecting service.

The overall effect would be highly beneficial.

Congestion pricing, however, encounters significant legal and practical obstacles.
The legal obstacles are illustrated by a recent experiment of Boston Logan Airport
with higher fees: the airport was forced to abandon its experiment because the De-
partment of Transportation found that the new fees discriminated against general
aviation. In general, federal aid to airports has long been conditioned on an “open
access” policy that prohibits airports from discriminating against classes of users. As
far as the practical problems with congestion pricing are concerned, one of the most
significant ones is the calculation of the optimal fee. In conclusion, congestion pricing

is unlikely to be widely implemented in the foreseeable future.

Use of larger aircraft.

Larger aircraft would absorb the expected increase in demand without necessitating
additional airport capacity. The problem, however, is that airlines lack incentives to
replace their aircraft by larger ones. Congestion pricing would provide such incentives,

but this is not likely to happen soon.

1.2.3 Short-term solutions.

~ The focus now shifts to short-term policies which consider airport capacities and flight

schedules as fixed for any given day. These policies consist in adjusting the flow of
aircraft on a real-time basis and are referred to as flow management policies. They

include [3]:

(1) Imposing “ground holds”, i.e., delaying the departure of an aircraft by not
allowing it to start its engines and leave its gate or parking area even if it is ready to
depart.

(2) Imposing en route speed controls in order to properly time aircraft arrivals.

(3) Modifying en route the flight plans of selected aircraft in order to bypass

congested areas.
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Ground-holding policies, falling under (1) above, make sense in the following situ-
ation. If an aircraft departs on time, it encounters congestion and incﬁrs an airborne
delay upon arrival at its destination; but if its departure is delayed, the aircraft arrives
at its destination at a later time when no congestion is present and no airborne delay
is incurred. Therefore, the objective of ground-holding policies is to absorb airborne

delays on the ground.

Ground-holding policies are motivated by the following two fundamental facts.
First, airborne delays are much costlier than ground delays, because airborne delays
include fuel and safety costs. Typical numbers for ground delay costs range from
about $20 to about $65 per minute, according to aircraft size, and airborne delays
are usually 30-50% higher, according to fuel price. Second, as was pointed out above,
airport capacity is highly variable even for a given configuration of runways, because
it depends heavily on weather (visibility, wind, precipitation, cloud ceiling). It is not
unusual for the capacity of an airport to be reduced by 50% in poor weather, due to
the increase in minimum separation between aircraft and the unavailability of some
runways when one shifts from VFR to IFR conditions. Given the above two facts, it
is seen that there is significant potential for readjusting aircraft flow given weather
(hence airport capacity) forecasts, and that such readjustment can result in significant

cost reduction if ground delays are substituted for the much costlier airborne delays.

~ As its title indicates, this thesis deals with the problem of finding optimal ground-

holding policies. This problem will be described now in more detail.

1.3 The Ground-Holding Problem (GHP).

The GHP can be described in the following way. We are given a network of airports,
a planning horizon typically consisting of a day or a portion of a day, and the schedule
of ﬂights to be performed within the planning horizon between the airports in the
network as well as from and to the external world. A flight is defined as a trip

from one airport to another. The schedule consists of the following data for each
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flight: its departure airport, its arrival airport, its scheduled departure time, its
scheduled arrival time, and the identification number of the next ﬂight scheduled to
be performed by the same aircraft. We are also given the ground delay cost function
and the airborne delay cost function of each flight, as well as departure and arrival
capacity forecasts for all airports of the network throughout the planning horizon.
The objective is to assign a ground hold to each flight so as to minimize the total

(ground plus airborne) delay cost for all flights.

The above description is oversimplified because it ignores two essential aspects
of the problem: the real-world GHP is dynamic and probabilistic. It is dynamic
because weather (hence capacity) forecasts are updated during the course of the day,
and ground holds should be revised whenever new information becomes available. It
is probabilistic because weather prediction itself is probabilistic: capacity forecasts
are not accurate more than a few hours in advance. The complications arising from
the probabilistic nature of the problem become clear when one considers that two
types of “errors” may occur. First, if capacity turns out to be lower than expected,
significant unforeseen airborne delays will occur. Second, if capacity turns out to be
higher than expected, a portion of this capacity may remain unused while aircraft
incur unnecessary ground delays. The interplay between overly optimistic and unduly

conservative strategies constitutes the challenge of the GHP.

Although the real-world GHP is dynamic and probabilistic, one may want to

explore simplified static or deterministic versions of the problem. This is because the
full-scale GHP is a very large problem: typical congested airports have about 500-600
flights per day.

1.3.1 Current ground-holding practice.

The importance of ground-holding policies has long been recognized. The FAA has
been operating for several years in Washington, D.C. an Air Traffic Control Sys-
tem Command Center (ATCSCC, formerly called the Central Flow Control Facility),

equipped with outstanding information-gathering capabilities, including weather fore-
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casts, up-to-the-minute data on the status of airborne traffic throughout the country,
and projections of traffic levels over several hours [3]. ATCSCC, however, relies
primarily on the judgement of its expert air traffic controllers rather than on any
decision-support or optimization models to develop flow management and ground-

holding strategies.?
The way in which the ATCSCC assigns ground holds is essentially the following.

(1) The ATCSCC calculates (through what is essentially a deterministic simulation
model [5]) the arrival profiles that would result from letting each aircraft depart on
time (cf. Figure 1-1).

(2) Given the calculated arrival profiles and the capacity forecasts, the ATCSCC
calculates, for each flight f, the airborne delay that f would incur if it were to depart
on time.

(3) The ATCSCC assings to flight f a ground hold equal to the above calculated
airborne delay, provided that the delay is not below a certain threshold (typically
about 15 minutes).

(4) Whenever new capacity forecasts become available, the ATCSCC updates
ground holds by following again steps (1)—(3).

This approach amounts to assigning flights to available capacity on a first-come-

first-served (FCFS) basis. Even if the problem is deterministic, i.e., if capacity fore-

casts are perfectly accurate, the approach may not be optimal, because it neglects the —

so-called “network” (or “down-the-road”) effects. Network effects are due to the fact
that each of a large number of aircraft typically performs more than one flight on any
given day, so that, when a flight is delayed, the next flight scheduled to be performed
by the same aircraft may also have to be delayed. Moreover, at a “hub” airport, a
late arriving aircraft may delay the departure of several flights, given current airline
scheduling practices which emphasize passenger transfers. Therefore, not all flights

are equal: delaying flights that are continued will typically result in a propagation of

2There is no analogous system in operation anywhere else in the world.
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Aircraft (per
time period)

? Arrivals

—

\ Capacity

-

Time
(periods)

Figure 1-1: Current ground-holding practice: given a calculated arrival profile and
a capacity forecast, aircraft falling in a region where demand exceeds capacity are
assigned to the first available region where capacity exceeds demand on a FCFS
basis. The airborne delays which are calculated in this way are then assigned as

ground holds.
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delays throughout the network. By neglecting this fact, current practice may result

in a suboptimal assignment of ground holds.®

1.3.2 Previous research on the GHP.

Previous research on the GHP has been restricted to the single-airport problem and
has neglected network effects. The single-airport GHP is the following special case
of the multi-airport problem: all airports of the network except one have infinite
departure and arrival capacities.* Although this is a simplified version of the GHP, it
is of interest in its own right and it provided significant insights for the multi-airport

case.

The first systematic description of the GHP is given by Odoni [3]. Terrab [5] gave
the following pure 0-1 integer programming formulation for the static deterministic

single-airport GHP:

: F T
(IO) min Ef:l Zt:rf C“}tvft

st Yiive S R(t), tefl,...,Th (1.1)
Y., ve=1, fe{l,....F} (1.2)
v €{0,1},  fe{l,...,F}te{rs,...,T} (1.3)

There are F' flights and T' time periods. The scheduled arrival time of flight fis

T¢, and C?et is the ground delay cost incurred if flight f is assigned to land at time
period t. Decision variable vy, is 1 if flight f is assigned to land at time period ¢ and
0 otherwise. Constraints (1.2) ensure that, for a given flight f, exactly one vy will

be equal to 1 and the rest will be 0. Constraints (1.1) are the capacity constraints,

3The performance of FCFS heuristics approximating, to some extent, current ground-holding
practice will be examined, by means of computational results, in Subsection 3.2.2 for the static case
and in Subsection 5.2.3 for the dynamic case.

4Call the airport with finite arrival and departure capacities Z. Strictly speaking, it is also pre-
supposed in the single-airport problem that the following possibility never occurs: a delayed flight
leaves from Z and causes, through a chain of continued flights, the delay of another flight arriving
later on to Z.
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R(t) being the landing capacity at period ¢.°

Terrab gave a reformulation of (Ip) as a minimum cost flow program, as well as
a second reformulation as an assignment problem. Then he proposed an efficient
algorithm for solving (Io) when cost functions belong to a special class. He also
suggested a two-airport formulation and a closed-network three-airport formulation

for the static deterministic GHP.

As far as the probabilistic GHP is concerned, Andreatta and Romanin-Jacur [1]
proposed a dynamic programming algorithm for the single-airport static probabilistic
GHP with one time period. Terrab extended their algorithm to the multi-period
single-airport case and gave several heuristics. Finally, Richetta [4] dealt with the
single-airport probabilistic and dynamic GHP by means of stochastic programming
with recourse. It seems that no significant research has been done to date concerning

the effects of ground-holding policies on an entire network of airports.

1.4 Overview of thesis and preview of main re-
sults.

This thesis constitutes the first attempt to deal with the multi-airport GHP. It focuses

on both static and dynamic versions of the deterministic multi-airport GHP, and has

~ the following two objectives. First, to show that the multi-airport GHP is tractable:

to propose efficient mathematical programming formulations which can be used in
order to assign ground holds on a real-time basis for a network of airports. These
formulations must be sufficiently flexible to accommodate various degrees of'modeling
detail. Second, to investigate the extent of the cost reductions that can be achieved by
applying optimal ground-holding policies. This second objective falls into two parts.
First, to compare the cost of optimal ground-holding policies with the cost arising

from heuristics approximating, to some extent, current ground-holding practice (cf.

5Formulation (Ip) was described in some detail here because it is similar in spirit to some of the
formulations in this thesis (cf., especially, formulation (I) in Subsection 2.3.2).
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Subsection 1.3.1). Second, to find the magnitude of the network effects, i.e., to

compare the optimal values of multi-airport with single-airport GHPs.

1.4.1 Overview of thesis.

The bulk of the thesis consists of Chapters 2 through 5. Chapters 2 and 3 deal with
the static GHP (where decisions are taken once for all at the beginning of the day),
while Chapters 4 and 5 deal with the dynamic GHP (where decisions are updated

during the course of the day as new capacity forecasts become available).

Chapter 2 proposes several pure 0-1 integer programming formulations for the
static GHP. Some of these formulations take into account the possibility of cancelling
flights; others take advantage of the fact that departure capacities are typically larger
than arrival capacities; yet others take into account that the split between departure
and arrival capacities can be changed by modifying runway use. All formulations are
quite compact: they have numbers of constraints and numbers of variables which are
small linear multiples of the number of flights. This compactness is responsible for

the tractability of multi-airport GHPs.

Chapter 3 presents extensive computational results based on the formulations of
Chapter 2. These results are used to investigate the behaviour of the multi-airport

GHP under various combinations of input parameters, and to ascertain the extent of

cost reductions resulting from ground-holding policies. Chapter 3 also describes and
evaluates a heuristic finding a feasible solution of the integer program based on the

optimal solution of the linear programming relaxation.

Chapter 4 puts forward formulations for the dynamic GHP. These formulations
are basically extensions of the static formulations of Chapter 2. A formulation for
the probabilistic GHP is also presented. Chapter 5 describes a variety of possible
dynamic ground-holding policies and compares them on the basis of computational

results corresponding to the formulations of Chapter 4.

Finally, Chapter 6 concludes by reviewing the main points and by proposing di-
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rections for future research.

1.4.2 Preview of main results.
The thesis accomplishes both of its aforementioned objectives.

First, the multi-airport GHP is demonstrated to be tractable: problems with as
many as 6 airports and 3000 flights are routinely solved in reasonable computation
times. Moreover, it is seen that one does not have to solve the integer programs
exactly, because the optimal solutions of the linear programming relaxations typically
have few noninteger values, so that they can be rounded off (by means of a heuristic

presented in Subsection 3.4.2) to give good feasible solutions of the integer programs.

Second, the extent of cost reductions achieved by optimal ground-holding policies
is investigated. It is shown that one must distinguish the magnitude of network ef-
fects from their importance. Network effects can be of large magnitude in the general
case, but they are very small in the special case where all flights have identical cost
functions. This special case is of practical interest, because different cost functions
might be considered a form of discrimination against classes of users. Even with
identical cost functions, however, network effects are of considerable importance: op-
timal ground holding policies can result in significant cost reductions with respect

to FCFS heuristics approximating, to some extent, current ground-holding practice.

Moreover, even with identical cost functions, ignoring network effects (i.e., solving
a single-airport GHP for each airport of the network) results in highly infeasible
solutions of the multi-airport GHP.

The bottom line is that optimal ground-holding policies seem to be implementable
with relative ease and would probably result in a significant alleviation of the conges-

tion problem.
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Chapter 2

The static GHP: formulations.

This chapter presents several pure 0-1 integer programming (IP) formulations for
the static deterministic multi-airport GHP and is divided into five sections. Section
2.1 introduces the notation that will be used throughout the thesis and explains
why the assumption that the problem is deterministic enables one to dispense with
departure and arrival queueing without loss of generality. Section 2.2 describes a first
IP formulation which also allows for the possibility of imposing airborne delays, e.g.,
by means of en route speed reductions. Section 2.3 discards this additional possibility
and shows that, when cost functions are linear and departure capacities are infinite,
if the problem has an optimal solution, it also has an optimal solution in which there

are no airborne delays. This result allows the construction of a compact second IP

formulation for the case of infinite departure capacities. Section 2.4 presents two
further IP formulations which correspond to the formulations of Sections 2.2 and 2.3
but have the additional possibility of cancelling flights. Finally, Section 2.5 proposes
some extensions of the above formulations. For instance, it is explained how some of
them can be modified to handle the case where departure and arrival capacities are
interdependent (e.g., because some take-off runways can be used for landings when

arrivals accumulate, or vice-versa).
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2.1 Introduction.

2.1.1 Notation.

Consider a set of airports K = {1,...,K} and an ordered set of time periods 7T =
{1,...,T}. For instance, K might be the set of the 20 or so busiest U.S. airports,
and 7 might be a set of 64 time periods of 15 minutes each, amounting to a time
horizon of 16 hours, i.e., the portion of a day from 7am to 11pm (when most flights
take place). Consider also a set of flights 7 = {1,...,F}. (Note that a single aircraft
may perform several of these flights.) F is the set of all flights of interest, e.g., all
flights departing from an airport in K and arriving to another airport in K. This
interpretation of F corresponds to a closed network of airports, for which departures
from and arrivals to the external world are not considered important. If an open
network of airports is to be considered, then F will be the set of all flights departing

from an airport in K or arriving to an airport in K (or both).

For each flight f € F, the following data are assumed to be known: kf € K,
the airport from which f is scheduled to depart; k¢ € K, the airport to which f is
scheduled to arrive; dy € 7T, the scheduled departure time of f; r; € T, the scheduled
arrival time of f (so the scheduled travel time is t; = r; —d;); c“}(), the ground delay
cost function of f (whose argument is the ground delay of f in time periods); and

c$(.), the airborne delay cost function of f (whose argument is the airborne delay of

f in time periods). For each (k,t) € K x T, the departure capacity Di(t) and the
arrival capacity Ri(t) (in number of aircraft) are also given. Since this chapter deals
with deterministic versions of the GHP, these capacities are considered fixed numbers
rather than random variables. Typical values, e.g., for Boston Logan Airport in good

weather are 15-16 landings per time period of 15 minutes; departure capacities are

15-30% higher.

Consider finally the set 7' C F of those flights that are “continued”. A flight is
said to be continued if the aircraft which is scheduled to perform it is also scheduled

to perform at least one more flight later on in the day. For each flight f' € F', we are
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given the next flight f scheduled to be performed by the same aircraft.

Define the decision variables g;, f € F, equal to the number of time periods
that flight f is held on the ground before being allowed to take off, and the decision
variables ay, f € F, equal to the number of time periods that flight f is further held
in the air (e.g., by means of an en route speed reduction) before being allowed to
land. Since this chapter deals with static versions of the GHP, it is assumed that
these ground and airborne holds are decided once for all at the beginning of the day
for all flights.

Table 2.1 summarizes the above notation for reference purposes. Table 2.1 also

includes some symbols which will be defined in the sequel.

2.1.2 No queueing when capacities are deterministic.

Consider now the following description of the real-world situation. If a flight f is
scheduled to depart at period dy and is delayed on the ground for g; periods, then it
will be available to depart at period ds + g;. Will it actually depart at that period?
This will depend on whether the total number of aircraft available to depart from
airport k}‘ at that time period will exceed or not the available departure capacity. If
it does exceed it, then the aircraft performing flight f will have to wait ¢¢ time periods

in the departure queue. q? will depend on the particular service discipline adopted

for the departure queue. So flight f will actually take off at period d; + gs + 4}
Since flight f will be further delayed in the air for a; time periods, it will arrive at its
destination, airport k%, and will be available to land at period r;+ gy +qi+ay. Willit
actually land at that period? This will depend on whether the total number of aircraft
available to land at airport k% at that period will exceed or not the available landing
capacity. If it does exceed it, then the aircraft performing flight f will have to wait %
time periods in the arrival queue, and will actually land at period 7+ g, +qj§+a, s +as
The total cost corresponding to flight f will be the sum of c$(g9f + ¢f) (the ground
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Symbol

Denotation

K ={1,...,K} | Set of airports.
T ={1,...,T} | Set of time periods.
F ={1,...,F} | Set of flights.
F'CF Set of continued flights.
K Number of airports.
T Number of time periods.
F Number of flights.
F' Number of continued flights.
k¢ e K Departure airport of flight f.
ke K Arrival airport of flight f.
d;eT Scheduled departure time of flight f.
ry €T Scheduled arrival time of flight f.
ty =ry —dy | Scheduled travel time of flight f.
c3(-) Ground delay cost function of flight f.
c3(. Airborne delay cost function of flight f.
Spr Slack time of continued flight f'.
Dy(t) Departure capacity of airport k at period t.
Ry(t) Arrival capacity of airport k at period t.
g5 Ground delay decision variable for flight f.
ay Airborne delay decision variable for flight f.
Uy Departure assignment decision variables for flight f.
Vit Arrival assignement decision variables for flight f.
qfa Departure queueing of flight f.
9% Arrival queueing of flight f.
Gy Upper bound on the ground delay of flight f.
Ay Upper bound on the airborne delay of flight f.
T7 Set of allowable departure periods for flight f.
17 Set of allowable arrival periods for flight f.
zf Cancellation decision variable for flight f.
M; Cancellation cost of flight f.

Table 2.1: Notation used throughout the thesis.
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gf + aj—

< g5 ty + ay

dy ds + g¢ T+ g5 +ay

Figure 2-1: Ground and airborne delays.

delay cost) and c}(as + ¢3) (the airborne delay cost).!

Because we are examining the deterministic case, the above description can be
considerably simplified. In fact, it makes little sense to assign to a flight f a ground
hold of g; time periods such that f will have to further wait qu time periods in the
departure queue: one might as well assign to f a total ground hold of g; + q}“’ time
periods such that f will not have to wait at all in the departure queue. Similar
remarks hold for airborne delays. Given this simplification, the total ground delay
of flight f will be g¢, and its total airborne delay will be ay, resulting in a cost of
c}(g7) + c3(ay). The situtation is depicted in Figure 2-1. |

2.2 A first pure 0-1 integer programming formu-

lation.

2.2.1 Coupling constraints.

Network effects will be taken into account in the following way. For each continued
flight f' € F', we are given the “slack” or “absorption” time ss. The slack is defined

as the number of time periods such that, if f’ arrives at its destination at most sy

! Actually the ground delay cost components corresponding to gy and to q}’ are different, because
q}i, unlike gy, is incurred with the engines running, so that it includes fuel costs. This complication,
however, makes no difference for the argument that follows.
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T Tt sp dy

—— slack: sy turnaround time ——

A 4

«— excess delay: gy +ap — sy

rfl -I- gfl + a/fl

Figure 2-2: Modeling of coupling constraints.

time periods late, the departure of the next flight f is not affected, whereas if f’ lands
with a delay greater than the slack, the “excess delay” of f' (i.e., the delay minus the
slack) is transferred to the next flight f. In the latter case, the next flight f will incur
a ground delay at least equal to the excess delay of f’. The situation is depicted in
Figure 2-2, where it can be seen that the slack s is equal to the difference between
(i) the time interval between the scheduled departure time of f and the scheduled
arrival time of f', and (ii) the minimum “turnaround” time of the aircraft performing

both flights.

2.2.2 Assignment variables.

The delay decision variables g; and a; were introduced above. Now we introduce the
assignment decision variables uy,, defined to be 1 if flight f finally takes off at period
t (i.e.,if rz 4 g¢ = t) and 0 otherwise, and vy, defined to be 1 if flight f finally lands
at period ¢ (i.e., if 75+ gf +ay = t) and 0 otherwise. These new decision variables are
introduced because the capacity constraints cannot be expressed in a simple linear

way in terms of the more natural delay decision variables.

Moreover, since we don’t want to have excessive ground or airborne delays, We also
introduce upper bounds on those delays. Gy is the maximum number of time periods
that flight f may be held on the ground, and A; is the maximum number of time
periods that flight f may be held in the air. Introduction of these bounds results in
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no loss of generality, since they can be arbitrarily large. In practice, however, typical
values are Gy = 4-5 and A; = 2-3, corresponding to maximum ground and airborne

delays of about one hour and half an hour, respectively.

Given the above setup, the set de of time periods to which flight f may be assigned
to take off is given by:

de = {t €T:d;<t< min(d; + Gy, T)}. (2.1)

Similarly, the set 77 of time periods to which flight f may be assigned to land is
given by:
T7 ={t €T :ry <t <min(ry + Gy + A;,T)}. (2.2)

For every flight f, exactly one of the variables uy; must be equal to 1 and the
others must be equal to zero, and similarly for the variables vs;. Given this fact, the
delay variables g; and ay can be expressed in terms of the assignment variables w ft

and vy in the following way:

gr= Y tup—ds, fEF; (2.3)
te'f;’

ay = Z tvgg —1p — gy, fEF. (2.4)
teTy

We are now ready to give a first pure 0-1 integer programming formulation of the

static deterministic multi-airport GHP.

2.2.3 The first formulation.
(I) min  $F, ¢fgs + c}ay
S.t. Zf:k?:k 'lLft S Dk(t), (k,t) € K X T; (2.5)

Ef:k;:k Vgt < Rk(t), (k,t) €K x T; (2.6)
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Zteffd ugp =1, feF; (2.7)

Yierp Ve =1, feF, (2.8)
gprtap —sp < g5, f€F, (2.9)
ay 20, feF; (2.10)
use,vpe € {0, 1} (2.11)

In the objective function of (I;), the cost functions c%(t), c}(t) were replaced by
their linear counterparts cit, c3t (¢},¢% being the constant marginal costs). Con-
straints (2.5) and (2.6) are the departure and arrival capacity constraints, respec-
tively. Recall that these have to be satisfied because we choose g; and ay such that
the queueing delays q}’, ¢} are 0 (and that we can do this because the problem is
deterministic). (Strictly speaking, we also need the condition that G4 and A; be
sufficiently large.) Constraints (2.7) (together with (2.11)) ensure that, for a given f,

exaclty one uy; will be 1 and the rest will be 0. Similarly for constraints (2.8).

Constraints (2.9) are the coupling constraints: they transfer any excess delay of
flight f' to its next flight f. In fact, constraints (2.9) say that, if flight f' arrives
at its destination with a total delay gy + as which is greater than s (the “slack”
defined above), then the next flight f will have to be delayed on the ground at least
g + ag — sy time periods; otherwise, the departure of the next flight f will not be
affected. Note that the existence of these coupling constraints allows us to have a
separable objective function: the cost of delaying flight f because of an excessive delay
of its previous flight f’ is taken into account via the term of the objective function
corresponding to f (i.e., cfgy), and so need not be included in the term corresponding
to f'. Note also that, if the coupling constraints did not exist, the problem would
decompose into K subproblems concerning one airport each, so that one could use

the already existing techniques to solve for each of the K airports separately.

Note that nonnegativity of g; is guaranteed by (2.3) (given (2.1)), whereas non-

negativity of as is not guaranteed, this is why constraints (2.10) are needed.
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For simplicity of exposition, variables g; and a; were kept in formulation (L),
but it should be clear that they can be eliminated by mere substitution through (2.3)
and (2.4), so that us; and vy, are the only decision variables. We give now the result

of this substitution: formulation (I7), where only uy; and v, appear.

(I{) min E?:l C?(Zteﬂ’; tvge —1yp) — (C? - c?‘)(Ztede tuge —dy)

s.t. Zf:kgzk uge < Di(2), (k,t)e K x T,
D ikg=k Vst < Ry (t), (k,t) e K x T;
Zte’ffd upe =1, feF
ZteTfa v = 1, feF;
ZteT;, tope —rp —sp < Ete']}d tug, — dy, fleF,
Zte’f; tvg — Zte’]}d tug, > 1y — dy, ferF;

Ugpe, Vpr € {0, 1}.

Note the compactness of the above formulation. The number of constraints is
3F+F'+2KT, and the number of variables is at most Y5 #(2G + As + 2) (we have
at most Gy + 1 uy; variables and Gy + Ay + 1 vy, variables for a given f). For the
typical values Gy = 4 and Ay = 2, the number of variables becomes at most 12F,
which is a small linear multiple of the number of flights. Although this formulation

is quite compact, one can do even better, as the next section will show.

2.3 Infinite departure capacities.

Formulation (I) is sufficiently general for the static deterministic case, but it can be
simplified considerably without significant loss of practical applicability. Note, first,
that it is usually undesirable to delay aircraft in the air. In fact, the fundamental goal
of ground holding policies is to avoid this kind of delay. Therefore, we may eliminate
airborne delays as decision variables; i.e., we may discard the possibility of en route

speed reduction. We will be left then with airborne delays resulting only from arrival
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queueing (denoted earlier by ¢%), and our only decision variables will be g;. (Note
that, since the problem is deterministic, ¢} are determined if g; and service disciplines

for the arrival queues are given.)

2.3.1 Infinite departure capacities give zero airborne de-
lays.

As pointed out in Chapter 1, departure capacities are typically higher than landing
capacities. This is due to the fact that the minimum separation between landings is
greater than the minimum separation between take-offs. Motivated by this fact, we

examined what happens if departure capacities are very large, theoretically infinite.

It will be shown now that, if departure capacities are infinite, ground and airborne
delay cost functions are linear, and ¢} > %, then, if formulation (I;) without airborne
delays as decision variables has an optimal solution, then it also has an optimal

solution in which no flight incurs an airborne delay.

Consider a feasible solution {g¢, f € F} and the associated arrival queueing delays
{4}, f € F}, and compare its cost with the cost of the new solution {g; + ¢, f € F},
in which all airborne delays are incorporated into ground holds. Given that the
cost functions are linear, and given that airborne delays are costlier than ground
delays, the new solution will have a lower cost than the previous solution. In fact,
c5(97 +q}) = c}gs + ¢34} < cfgs + cq3. Moreover, the new solution {g; + 9%, f € F}
is feasible (assuming sufficiently large Gy), since there are no departure capacity

constraints.

Now are we entitled to assume that departure capacities are infinite? Compu-
tational experience reported in Subsection 3.3.1 shows that the impact of finite de-
parture capacities is negligible (when departure capacities are higher than arrival
capacities by realistic amounts). This a posteriori argument justifies the assumption
of infinite departure capacities. Note that, in the single-airport case, which is the only

case considered so far in the literature, no departure capacities are involved, so that
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one is in fact rigorously justified to consider only feasible solutions with zero airborne

delays (provided the problem is deterministic and the cost functions are linear).

Assuming infinite departure capacities eliminates thus airborne delays and gives

a second pure 0-1 integer programming formulation of the static deterministic multi-

airport GHP.

2.3.2 A second pure 0-1 IP formulation.

The second formulation is in some sense a special case of (I;) but requires some
manipulations in order ro be derived from (I;). Given (2.4), by setting a; = 0, one

gets the following expression for g;:

gr= Y tvg—rys, fEF. (2.12)

tE']}“

By comparing then (2.12) with (2.3), it is seen that?:

dotvp— Y tup=r1;—dysy, fEF, (2.13)
teT; te']}d
so that (given (2.7) and (2.8)) one of the two sets of variables is now redundant.
We choose to discard uy; and to keep vy, since vy, appears in the arrival capacity
constraints (2.6), which must be kept. The departure capacity constraints (2.5) are
discarded, as are the assignment constraints (2.7). We are left with the following

formulation:

(I2) min i1 €}
st Srasmevse < Balt), (kt) € K x T (2.14)
Yeerevie=1, feF; (2.15)
g —sp<gs, [ EF, (2.16)

?By comparing (2.1) and (2.2), one can see that Ay must be equal to 0 in the case of infinite
departure capacities without airborne delays as decision variables: if flight f takes off at d; + ¢, it
will land at r; +¢.
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vge € {0,1}, feF,teTp. | (2.17)

Direct substitution of (2.12) into (I;) gives:

(I;) min Zle C?(Zteg—; tug —7y)
8.t 2 pike=r Ve < Ri(2), (k,t) e KX xT;
Yeete Vit =1, ferF;
EtGT,“, top —rp —sp < Zte?’; tvg — 1y, f € F;
vy € {0,1}, feF,teTy

Note the simplicity of formulation (I;). The number of constraints is F+ F'+ KT,
and the number of variables is at most 3¢ =(Gy + 1) which, if all Gy are equal to
4 (corresponding to a maximum ground hold of one hour), becomes 5F. Therefore,
the total number of flights F' is the major determinant of the size of the problem.
The number of time periods T has almost no influence on the size of the problem,
and the same holds for the number of airports K. Of course, the number of airports
has an indirect influence on the size of the problem, since it influences the number
of flights to be considered. Typically, a major U.S. airport has 10001200 operations
(landings plus take-offs) each day, corresponding to 500-600 flights per day. But
still, the fact that the problem is insensitive as to how the total number of flights is
distributed among airports and time periods is quite welcome. This becomes clear in
dynamic versions of the ground-holding problem in which the time horizon is limited
to a portion of a day, so that fewer flights per airport have to be considered, and it

becomes possible to solve the problem for a large number of airports.?

Note, finally, that, if the coupling constraints (2.16) are omitted from the formu-
lation, what is left is essentially the single-airport formulation given, e.g., in [5] (cf.
formulation (Ip) of Subsection 1.3.2). It follows that the coupling constraints (2.16)

are the gist of the model. It is indeed surprising that the network effects can be taken

3Cf., however, p. 75, footnote 2.
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into account in such a simple way without loss of generality. Simplex sigillum veri

(“the simple is the sign of the true”).

2.4 Flight cancellations.

In situations where delays become excessive, it is common airline practice to can-
cel some flights, especially at hub airports. Motivated from this fact, we developed
formulations which take into account the possibility of cancelling flights. These for-
mulations have the additional advantage that they escape infeasibility problems which
might arise with formulations (I;) and (I,). Infeasibility occurs when airport capac-
ities are low: even though the total daily capacity of an airport may be sufficient to
accommodate the total number of flights scheduled to depart from or arrive at that
airport, the problem may still be infeasible if excessive congestion appears during
some portion of the day. This is mainly due to the requirement that there be upper
bounds, Gy and Ay, to the delays of flight f. In order to grasp this point with re-
spect, e.g., to formulation (I3), take the extreme case where the landing capacity of
an airport is reduced to zero for G4 + 1 successive time periods. Then, if a flight was
scheduled to arrive exactly before the zero capacity interval, it will be impossible to
reassign this flight and the problem will become infeasible. Similar remarks hold for

formulation (I).

We will give two new formulations, (I5) and (I4), corresponding to (I) and to (1),
respectively. Keep the old decision variables uy; and v4;, and define the new decision
variables z¢, f € F, to be 1 if flight f is cancelled and 0 otherwise. Denote by M; the
cancellation cost of flight f. When a flight in F' (i.e., a flight that is “continued”)
is cancelled, there are two possibilities concerning the next flight initially scheduled
to be performed by the same aircraft: either it is performed by a replacement (or a
“spare”) aircraft, or it is also cancelled. The first case is more common in practice,
especially in hub airports where most cancellations take place, but the formulations
are general enough to incorporate a combination of both cases. Partition F' into Fi,

the set of those flights in F’ whose cancellation will not affect their next flight, and
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F,, the set of those flights in ' whose cancellation will entail the cancellation of their

next flight. We give now first the new formulation corresponding to (I).

2.4.1 A third pure 0-1 IP formulation.

({3) min Ciei(ctgs + (Mg + chry)zg)
s.t. Lsika=ie Vst < Ri(t), (k,t)e K x T; (2.18)
zi+ Yeerpvse =1, fETF; (2.19)
g —sp+ (sp+rp —rp)zp < g, €T (2.20)

gfI—Sfl+(Sfl+rfl+Gf+l)ZflS gf+(7'f-|~Gf+].)Zf,f’Ef;; (221)
v, 25 € {0,1}. (2.22)

The above formulation incorporates some technical tricks which are necessitated
by the fact that, when a flight f is cancelled (i.e., z; = 1), then all v4, corresponding
to f are 0 (by (2.19)), so that (2.12) gives g; = —r;. Keeping this fact in mind, it can
be seen immediately that, when z; = 1, the objective function term corresponding to
fis My. It is also clear that, when zp = 1, (2.20) becomes —r; < g4, which holds
even if flight f is cancelled (so that cancellation of f’ leaves f unaffected). Finally, if
zpr = 1,(2.21) becomes Gy +1 < gs+ (74 + G +1)zy, entailing z; = 1 (since g; < Gy

always), which is precisely what is wanted: if f’ is cancelled, then f is also cancelled.

The variables g; were again left in the formulation, but it should be clear that
they can be eliminated by mere substitution through (2.12). Now an important point
is that the variables z; can also be eliminated through (2.19), provided that (2.19) is

replaced by Eterrfa. vg < 1. The outcome of effecting all these substitutions is:

(13) min I [M; + Siers oSt — ) — My)
s.t. Zf:k;:k Vs S Rk(t), (k, t) € K x T;

Zte?’; vpe <1 feF;
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Loets Vin(t — 851 =715 +74) < Tieratoge, f € Fyj
ey vt —sp—1p—G=1) < Tiera vt —rs— Gy —1), f' € Fy;

Uity 25 € {Oa 1}'

The fact that the new formulation (I3) has exactly the same number of variables
and of constraints as the previous corresponding formulation (I7) is particularly sig-
nificant, since (I3) enjoys considerable advantages both in terms of generality (the
real-world problem is better approximated) and in terms of flexibility (infeasibility

problems are eliminated).

2.4.2 A fourth pure 0-1 IP formulation.

We give now the formulation with flight cancellations corresponding to (I ):

({4) min Sioalefgs + cray + (Mg + cGds + c3(ry — dy))zy]
s.t. 2 pehg=i Uge < Di(t), (k,t) e K x T, (2.23)
Lpkg= Vst < Ri(t), (k,t) € K x T; (2.24)
2t t Yeerpuse =1, fE€F; (2.25)
zf + Eteq—fa vpe=1, feF; (2.26)
grtap —sp+(sptrp—rs)zp < gz, f€F; (2.27)

gf:—l—afn—sf:—}-(sf:-]—rf:-l— Gf+1)zf: < gf-}-(’r'f-i-Gf-{-l)Zf,f'E]:;; (2.28)
as 20, f € F; (2.29)
Upe,Vyty 2f € {0, 1}. (2.30)

The new technical tricks in the objective function are necessitated by the fact
that, when flight f is cancelled (i.e., zs = 1), then all uy; and vy, corresponding to f
are 0 (by (2.25) and (2.26)), so (2.3) and (2.4) give g; = —d; and ay = d; — r4. Note
that in that case we have gy 4+ ay = —ry, this is why the coupling constraints of (I,)

are essentially the same as those of (I3).
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We conclude this section by giving the result of eliminating g¢s, ay, and z; from

(Ls):

(I3) min 5, [Mys+c3 Liety vu(t —ry) — YeeTy ug((t —dyg)(cg — ) + My)]

s.t. th#k up < Di(t), (k,t) € K x T;
Srkazk Vst < Bu(t), (k,t) € K x T;

Teerpuse <1, fEF; (2.31)

Lierp Use = Leetp Vg0 [ €T (2.32)

Zte']}“, ‘Ufrt(t — 81 — Typr + Tf) < Ete»rfd tht + Ty — df’ f’ € .7:1,
Tiers vpn(t—sp—rp—G5=1) < yeqaup(t—rs—Gr—1)+r—dy, f'e Fy;
i f
ZtETf“ tvft — ZtGde tuft 2 T'f — df,f € f;

use, vy € {0,1}.

Note that, given (2.32), (2.31) could be replaced by Teerpvse < 1.

2.5 Extensions.

A particularly attractive feature of the formulations developed in this chapter is their
flexibility: they can be extended in several ways in order to accommodate various

degrees of modeling detail. Four examples of such extensions will be examined in this

section.

2.5.1 Hub airports: more than one “next” flights.

In hub airports, an arriving flight typically has passengers connecting to several de-
parting flights. This can be taken into account in any of the formulations (I;)-(14)
by means of an easy extension. It suffices to reinterpret the coupling constraints as
linking not only a pair of flights scheduled to be performed by the same aircraft, but
also any pair of flights f' and f such that f is not allowed to leave before f' lands,

because passengers in f' connect to f. With this reinterpretation of the coupling
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constraints, a continued flight may have more than one next flights. Therefore, the
formulations remain unchanged and a number of new coupling constraints is simply

added to them.

Note that the slack in a coupling constraint of the new kind (connecting flights)
will typically be different from the slack in a coupling constraint of the old kind (con-
tinued flights). This is because the turnaround time involved in connecting flights is
restricted to moving passengers and their luggage, while the turnaround time involved

in continued flights also includes cleaning and refuelling the aircraft.

2.5.2 En route speeding.

Sometimes there is the possibility to speed up an aircraft en route, so that the aircraft
may arrive even before its scheduled arrival time. This possibility can be easily taken
into account in any of the formulations with airborne delays presented in this chapter.
It suffices to take 74 to be not the scheduled arrival time, but the earliest possible
arrival time. If, for instance, an aircraft is scheduled to arrive at time period 28, but
may be speeded up so as to arrive up to two periods earlier, r; for the corresponding
f will be equal to 26. An airborne “delay” a; equal, e.g., to 1 will correspond to a
speeding up of one time period, whereas an a; equal to 3 will correspond to a slowing
down of one time period. The actual arrival time of flight f will of course also depend

on its ground delay: if f departs with a ground delay g; equal to 3 and is speeded

up by one time period, it will arrive with a total delay of two time periods, i.e., at
period 30 (which is r¢ + g7 + af = 26 + 3 + 1). Note that the upper bound A; will

have to be increased by 2 in this example.

2.5.3 Interdependence between departure and arrival ca-
pacities.

Usually the departure and arrival capacities of a given airport at a given time period
are not independent, because they are determined by the way in which runway use

is assigned to departing or arriving aircraft. If all runways are exclusively used for
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Rk,mam(t)

Tkt + dkt = 3Rk,mam(t)

kt + 3dkt = 3Dk,mam(t)

- dkt

Dk,mam ( t )

Figure 2-3: An example of a region of possible combinations between the departure
capacity di; and the arrival capacity 74 of airport k at time period t.

landings, arrival capacity reaches a maximum value Ry mq.(¢) determined by the mini-
mum separation between successive landings, while departure capacity is 0. If all run-
ways are exclusively used for take-offs, departure capacity reaches a maximum value
Dy maz(t) determined by the minimum separation between successive take-offs (which
is less than the minimum separation between landings, so that Dk,maz(tb) > Rimaz(t)),
while arrival capacity is 0. Intermediate cases give departure and arrival capacities

belonging to a region with the general shape of a two-dimensional convex polytope

(Figure 2-3). Note that this region differs among airports and, for a given airport, it

can change with time (because weather can change).

The above situation can be easily taken into account in any of the formulations
with finite departure capacities presented in this chapter, i.e., (I3) or (I;). This
is achieved by introducing the new integer (not 0-1) decision variables dy; and 7,
standing, respectively, for the departure and the arrival capacities of airport k at
time {. These new decision variables will replace the constants Di(¢) and Ri(t) in
the right-hand sides of the capacity constraints. In addition, new sets of constraints

will be needed, one set for each time period, ensuring that di; and ry, fall within
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the region of their possible combinations. These constraints will be of the following

general form:

aitdkt + IBIitrkt S 7Iit7 (k7t) € K x T,l € {17 ce 7Ikt}’

where o}, 8},,7i, are constants and I, is the number of linear constraints describing

the departure-arrival capacity region of airport k at time period ¢. For instance, for

the region shown in Figure 2-3, the following two constraints are needed for period ¢:

37kt + dkt < 3Rk, maz(t); (2.33)
Tkt + 3dre < 3Dk max(t). (2.34)
As an example, we give the modification of formulation (I, ):
(Is) min Y7, c4gs + clay
St Tpasmrtse <diey  (kyt) €K x T (2.35)
Srasek 0t Saey (ky8) € K x T (2.36)
Aydie + Bhyrie < vlyy (Byt) €KX x Tyi € {1,..., I} (2.37)
Yeerp s =1, fer
Zte']}a v =1, fer
g tap—sp < gp fEF
ay 20, feF;
us,vge € {0,1};
dit, Tt integers > 0. (2.38)

Note that formulation (I5) has 2K T variables more than (I;) (a negligible number

compared with the remaining about 12F variables), and ¥ rex Yer It more con-

straints. Thus the additional number of constraints will be a small multiple of KT,

which is again negligible compared with the remaining 3F + F' 4+ 2K T constraints.
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Variables di; and 7, were introduced in order to make formulatipn (Is) clearly
understandable, but these variables can be eliminated. In fact, constraints (2.35)
and (2.36) can be replaced by equalities since constraints (2.37) are inequalities.
Then di; and 4 will represent the used capacities of airport k at time period ¢. We
are thus left with the following formulation (I}), which has exactly the same number

of variables as (I1), but has 2K T variables and 2K T constraints fewer than (Is)!

(Z5) min 1 €hs + cay
s.t. ait(Zf:k}:k ugt) + ﬂlit(Zf:k}:k vr) <My (kyt) € KX T,ie{l,..., I}
Ztetz}d ugpe =1, feF;
Etetr; vpe =1, fer
g5 +ap —sp < gy, fleF,
ay > 0, feF;

ug,vp € {0,1}.

2.5.4 Similar percentages of continued and noncontinued
flights that are delayed.

As will be shown in Subsection 3.1.3, the optimal solution of the formulations pre-

sented in this chapter may result in a large discrepancy between the percentages of

a1

continued and noncontinued flights that are delayed, continued flights being typically
delayed much less often than noncontinued flights. This might be considered a form
of discrimination against classes of users, because some airlines may have a larger per-
centage of continued flights in their schedules than other airlines. The situation can

be easily remedied by adding the following single constraint to any of the formulations

(I)~(Ls):

Efe]:l EtETfa\{"f} Vst Z Zfe-r\f' EtGT;\{"f} Ut - a, (2.39)
F F—F

where a is a number between 0 and 1. If, e.g., one wants the percentage of continued

flights which are delayed to be within 10% of the percentage of noncontinued flights
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which are delayed, then a = 0.1. Alternatively, or in addition, one could want the
mean delay per flight (rather than the percentage of delayed flights) to be about the
same for continued and noncontinued flights. This could be achieved by adopting the

following single constraint:

2reF 9f o Lier\F 9f
> — .
Ry ey Tl (2.40)

where [ is not restricted to be between 0 and 1.

Further concerns about discrimination among various classes of users could be

handled in similar ways.
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Chapter 3

The static GHP: results.

This chapter presents a systematic investigation of the static deterministic multi-
airport GHP by means of extensive computational results based on the formulations
of Chapter 2. A major theme of the chapter is the examination of the network effects
differentiating the multi-airport from the single-airport GHP. A fundamental conclu-
sion of the chapter is that the magnitude of network effects must be distinguished

from their inportance.

The chapter is divided into five sections. Section 3.1 examines the magnitude
of network effects, measured as cost savings of optimal multi-airport ground-holding
policies compared to optimal single-airport ground-holding policies. It is found that

cost savings are small when all flights have identical cost functions but can be large

when cost functions differ. Section 3.2 shows that network effects are important even
when all cost functions are identical, because optimal single-airport ground-holding
policies are highly infeasible for the multi-airport problem, and because the optimal
value of the multi-airport problem is much lower than the cost of a heuristic approx-
imating, to some extent, current ground-holding practice. Section 3.3 shows that
the impact of finite but fixed departure capacities is negligible, while finite departure
capacities interdependent with arrival capacities can result in significant cost savings.
Section 3.4 examines the model with flight cancellations. It proposes a heuristic find-

ing a feasible solution of the integer program on the basis of the optimal solution
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of the linear programming relaxation and it shows that this feasible solution is good
when cancellation costs are reasonable. Finally, Section 3.5 summarizes the results

of the chapter.

3.1 Magnitude of network effects.

3.1.1 The decomposed problem and its role.

Given any of the formulations (I;) of Chapter 2, the decomposed problem (D;) cor-
responding to that formulation is defined as the linear programming (LP) relaxation
of that formulation without the coupling constraints. For instance, the decomposed
problem (D) corresponding to formulation (I,) is the LP relaxation of (I,) without

constraints (2.16), namely:

(D3) min i gy
st Tpnsmevpe < Bi(t), (kyt) €K x T; (3.1)
Yetpvee=1,  feF; (3.2)
0 <wvpy <1, feF,teT}. (3.3)

Note that (I;) without the coupling constraints has a totally unimodular constraint

matrix [5]. This is why (D;) was defined as a linear program: its optimal solution

will always be integer.

It is easy to see that solving the decomposed problem is equivalent to solving
the single-airport GHP (cf. formulation (Ip) of Subsection 1.3.2) for each airport
separately and then adding the optimal objective function values corresponding to
the various airports. Therefore, by comparing the optimal values of (I;) and (D;), one
gets a measure of the magnitude of network effects. A large gap between these optimal
values (denoted by vy, and vp,, respectively) presumably justifies one in pursuing the
application of algorithms pertaining to the multi-airport (coupled) GHP rather than

solving for each airport separately by means of the existing methods for the single-
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airport GHP.

Although the comparison between vy, and vp, is of interest, it must be noted that
(I;) and (D;) are not directly comparable, because, as will be shown in Subsection

3.2.1, the optimal solution of (D;) can be highly infeasible for (I;).

We will also include in the comparisons the optimal value, vy, of the LP relaxation,

(L;), of (I;). Obviously we always have:
vp; < vr; < vg, iE{l,...,5}. (3'4)

It should be noted that the objective of this chapter is to investigate the behaviour
of the problem under various combinations of the input parameters, not to demon-
strate the efficiency of any particular algorithm. In fact, the various instances of the
problem were solved by using the well-known commercial package MPSX, rather than
any custom-tailored algorithm. Some computation times (in CPU seconds) are given
simply in order to indicate whether the problem can be solved in reasonable time,

rather than in order to provide any “good” bounds on computation times.
p g p

3.1.2 Network effects insignificant when cost functions are

identical.

This subsection starts with examination of a representative test case and then moves

on to a systematic series of test cases showing that network effects are small in the case
of identical cost functions. The systematic series of test cases is then used to examine
the behaviour of computation times, as well as the impact of input parameters (such

as capacities and upper bounds on delays) on the optimal objective function value.

Test case W.

We start with a test case referring to formulation (I;). Since this test case will be
used a number of times in the sequel, let us give it a name: call it W. Test case W

has K = 3 airports, T = 100 time periods, F' = 1800 flights (600 flights per airport),
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Capacities VD, vr, vr,

(10,10,10) || 43,550 | 43,550 | 43,550
(19,10,10) || 51,900 | 52,800 | 52,900
(10,10, 9) || 48,500 | 49,000 | 50,600
(9,10, 9) | 56,850 | 57,450 | 57,950
(10,10, 8) || 55,650 | 56,700 | 58,000

Table 3.1: Behaviour of test case W around the capacity border between feasibility
and infeasibility.

and F' = 600 flights. With the exception of capacities, all parameters will be kept
fixed in this test case: the cost function slopes are 50, the slacks are 0, and the upper
bounds on the delays are 4 time periods. The scheduled arrival times were arbitrarily

chosen.

As mentioned in Section 2.4, if arrival capacities are very low, the problem becomes
infeasible. On the other hand, if capacities are very high, there is little need to delay
aircraft. It follows that the capacity region of interest is around the infeasibility
border: capacities high enough for the problem to be feasible but low enough so that,

if they are marginally decreased, the problem becomes infeasible.

Let us consider for the moment only cases in which the arrival capacity of any

found (by trial and error) that, for the particular test case W under consideration,
for (Ry, Rz, R3) = (10,10,10) the problem is feasible, while for (9,9,9) the problem
is infeasible. Furthermore, for (9,10,10), (10,10,9), (9,10,9), and (10,10,8) the prob-
lem is feasible, while for (10,9,10), (8,10,10), and (10,10,7) the problem is infeasible.
These results give a fairly good picture of the boundary between capacity regions

corresponding to feasibility and to infeasibility for test case W.

Table 3.1 gives the optimal objective function values of (D), (L), and (I2) for the

various capacity cases. It is seen that these values always turn out to be very close.
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F | F'/F || Capacities VD, VL, vy, || Nonint.

1000 | 0.20 (12,14) 71,000 | 71,000 [ 71,000 63
1000 | 0.40 (10,10) 56,000 | 56,000 | 56,000 84
1000 | 0.60 (11,11) 84,200 | 84,300 | 84,700 168
1000 | 0.80 (10,10) 65,000 | 65,000 | 65,500 128
2000 [ 0.20 all 14 96,300 | 96,300 | 99,000 117
2000 | 0.40 all 14 88,400 | 89,933 | 93,200 195
2000 | 0.60 all 12 71,600 | 71,600 | 71,800 252
2000 | 0.80 all 17 53,250 | 57,387 | 65,500 355
3000 | 0.20 all 12 128,000 | 129,200 | 129,400 110
3000 | 0.40 all 18 55,800 | 55,800 | 57,300 119
3000 | 0.60 all 17 90,200 | 96,550 | 99,650 232
3000 [ 0.80 all 18 80,500 | 84,250 | 87,050 414

Table 3.2: Results for the test series at the infeasibility border.

This is a surprising result which needs explanation, but it must first be ascertained
that it is a general phenomenon rather than a peculiar feature of the particular test

case under consideration.

Systematic series of test cases.

We examined a series of cases with 2, 4, and 6 airports and 500 flights per airport (so

the three cases had 1000, 2000, and 3000 flights, respectively). For each of the three

E— /”‘/"Cﬁsegffﬁﬁf'“vajﬂieswﬁf"’Fl"WeTé"?Xﬁm‘iﬁe_d;"@Oﬁ‘ﬁﬁ(ﬁl&iﬁg"fﬁ’E‘Ta_,f.iﬁ"F!’ff"é"qliai"tb””ﬁiﬁﬁ;" B

0.40, 0.60, and 0.80. In all the 12 resulting cases, T' was kept fixed and equal to 64
(corresponding to a 16-hour time horizon with 15-minute periods). The cost function
slopes were always 50, all slacks were 1, and all upper bounds on delays were 4.
Table 3.2 summarizes the results. The capacities appearing in the table for any
particular case are at the infeasibility borders and were found by trial and error. It is
seen that the gap between vp, and vy, is always small. The last column of Table 3.2
gives the number of flights for which the optimal solution of (L,) had noninteger
values. It can be seen that this number is usually small, around 10% of F. This

observation provided the motivation for the development of a heuristic which would
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F | F'/F || Capacities | tp, | tr, t

1000 [ 0.20 || (12,14) | 218 ] 258 371
1000 | 0.40 || (10,10) || 235 | 327 | 804
1000 | 0.60 || (11,11) || 242 | 377 | 6958
1000 | 0.80 || (10,10) || 235 | 453 | 9512
2000 | 0.20 || ol 14 664 | 731 | 5126
2000 | 0.40 || all 14 652 | 973 | 9522
2000 | 0.60 | all 12 644 | 1148 | 13607
2000 | 0.80 || all 17 617 | 1603 | 18093
3000 | 0.20 || all 12 || 1188 | 1453 | 11360
3000 | 0.40 || all 18 | 1208 | 1808 | 13291
3000 | 0.60 || all 17 | 1166 | 2547 | 17980
3000 | 0.80 || all 18 | 1180 | 3072 | 25021

Table 3.3: Computation times (in CPU seconds) for the results of the test series.

take as input the optimal solution of (L;) and would round it off in order to give as
output a feasible solution of (I;). Such a heuristic was developed for the model with

flight cancellations, and will be presented in Subsection 3.4.2.

Computation times.

Table 3.3 gives the computation times, in CPU seconds, for the 12 cases of Table 3.2.

The following remarks can be made. First, the computation times ¢p, and ¢y, are

quite reasonable, but t;, can become excessive. Second, as one would expect, the
computation times increase as F' increases, because the number of constraints and the
number of variables increase. Third, for any given F, tp, does not vary significantly
with F', while ¢;, and t;, increase as F" increases. This is due to the fact that
an increase in F' increases the number of constraints of (L,) and (I;) (which have
KT + F + F' constraints), while it leaves unaffected the number of constraints of (D)
(KT + F).!

!For any given F', the four problems corresponding to the four values of F//F don’t simply differ
in the connections between flights, but have different arrival schedules; therefore, the corresponding
four decomposed problems are not identical.
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Optimal value as a function of capacity.

Tables 3.4, 3.5, and 3.6 give results for some of the cases of Table 3.2 but for capacities
higher than and around the infeasibility borders. Computation times are also given.
(For purposes of comparison, the relevant numbers from Table 3.2 are reproduced
in Tables 3.4, 3.5, and 3.6.) As expected, v, is an increasing function of capacity,
and its increments increase for given capacity increments as the infeasibility border
is approached. In other words, if vz, were differentiable, its second derivative would

be positive.

The fact that, in several cases, v, is 0 (i.e., no delays are incurred) when all airport
capacities are equal to 20 is due to the particular way in which arrival schedules were
generated for those cases: aircraft were scheduled to arrive in batches of 20 or less
at various time periods. Note also that the four problems corresponding to each of
the three values of F' in the systematic series are unrelated!; this explains why, in

Table 3.2, the optimal values are not increasing functions of F'/F.

Impact of upper bounds on delays.

The reason why there is an infeasibility border is that upper bounds on delays were
imposed (the Gy of Chapter 2). These bounds were kept fixed and equal to 4 time
periods (corresponding to 1 hour) in all the above cases, but one may wonder what

happens if greater delays are allowed. Table 3.7 gives results for F = 3000 and

Gy going up to 8 time periods (2 hours). As expected, increasing G decreases the
infeasibility border, and this results in an increase of the optimal value. However, once
the problem is feasible for given capacities, increasing G further has little impact
on the optimal value. This is important, because it shows that, once the problem is
feasible for desirable capacities, one need not worry about increasing the upper bounds
on delays in order to decrease costs. This is also welcome from a computational point
of view. It will be remembered, from Subsection 2.3.2, that the number of variables
in (I;) is at most Y ;c#(G¢ + 1). This number almost doubles when G increases

from 4 to 8, and this is reflected in the computation times shown in Table 3.7.
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F | F'/F || Capacities vg, | tr, || Nonint.

1000 | 0.20 all 30 17,000 | 265 0

1000 | 0.20 all 20 34,000 | 268 18
1000 | 0.20 all 15 55,750 | 267 15
1000 | 0.20 all 14 61,600 | 263 47
1000 | 0.20 (13,14) 65,850 | 264 70
1000 | 0.20 (12,14) 71,000 | 258 63
1000 | 0.40 all 30 4,000 | 295 0

1000 | 0.40 all 15 22,500 | 312 10
1000 | 0.40 all 11 44,500 | 326 65
1000 | 0.40 all 10 56,000 | 327 || 84
1000 | 0.60 all 15 15,500 | 409 21
1000 | 0.60 all 13 23,300 | 402 37
1000 | 0.60 all 11 84,300 | 377 128
1000 | 0.80 all 15 16,500 | 432 14
1000 | 0.80 all 11 46,500 | 468 126

1000 | 0.80 all 10 65,000 | 453 168

Table 3.4: Results above and around the infeasibility border for F' = 1000.
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F | F'/F | Capacities vr, | tr,
2000 | 0.20 all 30 0| 680
2000 | 0.20 all 15 63,500 | 740
2000 | 0.20 all 14 96,300 | 731
2000 | 0.40 all 20 0| 846
2000 | 0.40 all 18 17,600 | 837
2000 | 0.40 all 15 58,750 | 965
2000 | 0.40 all 14 89,933 | 973
2000 | 0.60 all 20 0] 1028
2000 | 0.60 all 15 35,750 | 1056
2000 | 0.60 all 14 45,900 | 1067
2000 | 0.60 all 13 57,250 | 1064
2000 | 0.60 all 12 71,600 | 1148
2000 | 0.80 all 20 0] 1411
2000 | 0.80 all 18 32,700 | 1433
2000 | 0.80 all 17 57,387 | 1603
2000 | 0.80 | (16,17,17,17) || 58,938 | 1537
2000 | 0.80 | (15,17,17,17) || 60,488 | 1666
2000 | 0.80 || (17,17,17,16) || 61,713 | 1708
2000 | 0.80 | (16,17,17,16) || 63,263 | 1551
2000 | 0.80 | (17,17,17,15) || 67,994 | 1657

Table 3.5: Results above and around the infeasibility border for F' = 2000.
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F |F'|F Capacities v, | tr,

3000 | 0.20 all 20 0 | 1360
3000 | 0.20 all 19 10,450 | 1376
3000 | 0.20 all 18 20,900 | 1401
3000 | 0.20 all 15 55,000 | 1430
3000 | 0.20 all 12 129,200 | 1453
3000 | 0.40 all 20 01751
3000 | 0.40 all 18 55,800 | 1808

3000 | 0.40 || (18,17,18,18,18,18) || 57,300 | 1785
3000 | 0.40 | (18,18,18,18,17,18) || 57,900 | 1790
3000 | 0.40 || (18,18,18,18,16,18) | 60,000 | 1792

3000 | 0.60 all 20 3,000 | 1969
3000 | 0.60 all 18 57,300 | 2204
3000 | 0.60 all 17 96,550 | 2547
3000 | 0.80 all 30 5,000 | 2495
3000 | 0.80 all 20 27,000 | 2927
3000 | 0.80 all 18 84,250 | 3072

Table 3.6: Results above and around the infeasibility border for F = 3000.

F | F'/F || Capacities | Gy v, | tr,
3000 | 0.20 all 12 4 128,000 | 1453
3000 | 0.20 all 11 5 || Infeasible | —
3000 | 0.20 all 11 6 187,650 | 2045
3000 | 0.20 all 11 7 186,900 | 2232
3000 | 0.20 all 11 8 186,900 | 2484
3000 | 0.60 all 17 4 96,550 | 2547
3000 | 0.60 all 16 4 || Infeasible | —
3000 | 0.60 all 16 5 147,253 | 3627
3000 | 0.60 all 16 6 140,944 | 5298
3000 | 0.60 all 15 6 || Infeasible | —
3000 | 0.60 all 15 7 210,440 | 6855
3000 | 0.60 all 14 8 || Infeasible | —

Table 3.7: Results for various upper bounds on delays.
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3.1.3 Network effects significant when cost functions differ.

Now we must explain the surprising fact that network effects were found to be insignif-
icant. Our conclusion will be that this is because all cost functions were identical.
Before we argue for this conclusion, let us examine two other possible explanations
that might be adduced. A first explanation might be that the capacities at the border
between feasibility and infeasibility, although they cannot be lowered in the context of
the present model, are still too high for network effects to have a severe impact. This
explanation, if true, would undermine the utility of formulation (I;) (though not of
(I1)) as a representation of the real-world situation. This explanation, however, is not
true. First, vp, and vy, are very close even with quite low capacities (see the second
and the fourth rows of Table 3.2). Second, in Subsection 3.4.1, where formulation
(I3), which is immune to infeasibility, is examined, it will be seen (cf. fifth row of
Table 3.12) that vz, and vp, are very close even with capacities as low as 256 aircraft
per airport per day (4 per period) (with 500 aircraft scheduled to land, so that the

remaining flights are cancelled).

A second possible explanation is that arrival capacities were taken to be uniform
(i.e., constant over the whole time horizon). As pointed out in Subsection 1.2.3,
ground-holding policies make sense when one delays aircraft on the ground now be-
cause one expects less congestion later on at the destination airports of the delayed

aircraft. But when airport capacities are uniform throughout the day, how can one

eJEpect less congestion later on? The answer is that less congestion can be expected
when fewer aircraft are scheduled to arrive later on, even if arrival capacities are uni-
form. Nevertheless, this second possible explanation has some validity, as shown by
computational results reported in Subsection 3.4.1 (cf. Table 3.13), where it is seen

that nonuniform capacities can give significant network effects.

The main explanation, however, is the identity of cost functions, as will now be

argued.
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% of % of

Capacities feF feF\F
delayed in (1) | delayed in (I,)

(10,10,10) 12% 30%
( 9,10,10) 18% 36%
(10,10, 9) 17% 34%
(9,10, 9) 20% 40%
(10,10, 8) 19% 37%

Table 3.8: Percentages of continued and noncontinued flights that are delayed in the
optimal solution of (I;) for test case W.

Few continued flights delayed with identical cost functions.

Small network effects mean that few continued flights are delayed. This is expected to
be the case if continued flights have the same cost functions as noncontinued flights.
In fact, if there is a choice (in (I;)) between delaying a continued flight f’ and a
noncontinued flight f, it will usually be preferable to delay the latter, since delaying
the former would probably result in a greater total cost (because the next flight of f'
might also have to be delayed). It follows that, in the optimal solution of (I;), few
flights in F' will be delayed if all cost functions are identical. This effect would be

particularly noticeable for small slacks.

A look at Table 3.8 corroborates the above hypothesis. Table 3.8 refers to test case

W (cf. Table 3.1), and gives the percentages of continued and of noncontinued flights

that are delayed in the optimal solution of (I5). It can be seen that the percentage of
continued flights that are delayed is half (or even less) the percentage of noncontinued

flights that are delayed.?

Significant cost differences with different cost functions.

A second way to confirm the above hypothesis is by varying the cost function slopes

so as to disadvantage continued flights. If continued flights have much lower marginal

?Recall, from Subsection 2.5.3, that this asymmetry between continued and noncontinued flights
might be considered a form of discrimination but can be remedied by adopting constraint (2.39)
or (2.40).
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delay costs than noncontinued flights, then it may often be preferable to delay a
continued rather than a noncontinued flight when a choice is available, with the
consequence that network effects may be significant. Test case W was run with
capacities equal to 10 and with cost function slopes equal to 10 for the continued
flights and equal to 100 for the noncontinued flights, and the results were: vp = 13,950
and vy = 22,811, a very significant gap. Other results with different cost functions

reported in Subsection 3.4.1 (cf. Table 3.14) also show significant network effects.

3.2 Importance of network effects.

The previous section showed that network effects can be large in the general case, but
are typically small in the special case of identical cost functions. This would not be
worrisome if identical cost functions were of little practical interest, as it seems that
they should be. In fact, as pointed out in Subsection 1.2.3, delay costs vary according
to aircraft size. Political considerations, however, make the case of identical cost
functions of significant practical interest, because nonidentical cost functions would
constitute a form of discrimination among classes of users. This is why almost all
computations were performed with identical cost functions. But now one may begin
to worry about the insignificance of network effects in this case. If, in a case of
considerable practical interest, solving the multi-airport GHP is about the same as

solving one single-airport GHP for each airport of the network, then why pursue

research on the multi-airport problem?

We will now give two decisive arguments showing that, even in the case of identical
cost functions, although network effects as defined in the previous section are of small
magnitude, they are of great importance. The two arguments will be: first, that
solving the single-airport problems gives solutions which are highly infeasible for the
multi-airport problem; second, that the optimal value of the multi-airport problem can
be much lower than the cost incurred by nonoptimal FCFS ground-holding practices

in certain instances.
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# of violated
Capacities coupling
constraints
(10,10,10) 179
( 9,10,10) 204
(10,10, 9) 183
(9,10, 9) 238
(10,10, 8) 235

Table 3.9: Number of coupling constraints that the optimal solution of (D,) violates
(test case W).

3.2.1 Decomposed solution highly infeasible for network.

The purpose of the GHP is to assign ground holds to all flights in a network of airports
so as to minimize total cost. It goes without saying that these ground holds must
be feasible; in particular, they must respect the coupling constraints. If an aircraft
is scheduled to perform flights f; and f, in succession, with a slack of 1 time period,
we cannot assign a ground hold of 3 time periods to f; and of 0 time periods to f,:
the aircraft will simply not be ready to depart on time for f,. Therefore, if solving
the decomposed problem results in solutions which violate a large number of coupling
constraints, then the decomposed problem is useless for practical purposes as far as

the multi-airport GHP is concerned.

The above is indeed the case. Table 3.9 refers to test case W and shows the
number of coupling constraints violated by the optimal solution of (I;). Since there
are 600 coupling constraints, about one third of them is typically violated, so the
solution of (D) is highly infeasible for (I).

3.2.2 FCFS heuristic highly inefficient.

The fact that the optimal solution of (D;) is infeasible for (I;) suggests that vy, should
not be compared to vp, but rather to the cost arising from some other way of assigning
feasible ground holds to the flights in a network of airports. Such a way is suggested
by the current ground-holding practice described in Subsection 1.3.1. Recall that this
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consists in calculating the excesses of scheduled arrivals over forecasted capacities and
in assignining ground holds on a FCFS basis. This FCFS heuristic gives a feasible
solution (provided the upper bounds on delays are sufficiently large) and is formally

described by the following algorithm.

BEGIN
Initialize: gy = 0.
FORt=1TO T DO:

FORk=1TO K DO:

Define Si(t) := {f : (kj = k)(rs + g5 =1)}.
Define Si(t) := |Si(t)).
IF Sk(t) > Ry(t) THEN:
Choose Si(t) — Ry(t) flights in Si(t).
FOR f =1 TO Sk(t) — Ri(t) DO:
Set gr = g5 + 1.
IF f has a next flight f THEN:
IF g; > s; THEN:
Set g; = g;+1, and similarly if f has
a next flight and so on.

END IF

END IF
CONTINUE f

END IF

CONTINUE &

CONTINUE ¢
END

Table 3.10 compares the cost of the FCFS heuristic with the optimal value of

the multi-airport GHP. Some results for the model with flight cancellations are also
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F | F'/F | Capac. VFCFS VL, VD, FCFS overestimation
1000 | 0.20 | (14,14) 77,200 | 61,600 25.3%
1000 | 0.40 || (13,14) 80,700 | 65,850 22.6%
1000 | 0.60 || (12,14) 84,200 | 71,000 18.6%
1000 | 0.40 || all 11 61,050 | 44,500 37.2%
1000 | 0.40 all 10 92,000 | 56,000 64.3%
1000 | 0.60 all 13 29,000 | 23,300 24.5%
1000 | 0.60 all 11 101,350 | 84,300 20.2%
1000 | 0.60 all 10 191,500 117,000 63.7%
1000 | 0.60 all 08 431,600 240,700 79.3%
1000 | 0.60 all 06 722,500 402,600 79.5%
1000 | 0.60 all 04 | 1,035,800 582,300 77.9%
1000 | 0.80 all 11 86,050 | 46,500 85.1%
1000 | 0.80 all 10 122,500 | 65,000 88.5%

Table 3.10: Comparison of FCFS heuristic values and exact optima.

included. All results are for identical cost functions. It is seen that the FCFS heuristic
always results in a cost much higher than what one can achieve by solving the multi-
airport GHP optimally. Equivalently, assigning optimal ground holds can reduce the
cost of the myopic procedure by a significant percentage, as much as about 50%. In
this sense network effects are quite important, and one is justified in pursuing research

on the multi-airport GHP.®

3.3 Finite departure capacities.

In this section it is shown that finite but fixed departure capacities have negligible
impact, whereas finite deparure capacities which are interdependent with arrival ca-
pacities can result in very significant cost savings. In other words, the optimal value

of formulation ([;) is very close to the value of formulation (I;), but significantly

3Note that the FCFS heuristic does not correspond exactly to current ground-holding practice
because, as pointed out in Subsection 1.3.1, the FAA dynamically updates ground holds during the
course of the day. The dynamic FCFS heuristic will be examined in Subsection 5.2.3.
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F | F'/F | Rk(t) | Di(t) Flight times VL, v, VL,

1000 | 0.20 | (12,14) 00 — 71,000 —

1000 | 0.20 || (12,14) | (12,14) Uniform: 2 — | 71,000

1000 | 0.20 | (12,14) | (15,17) | Nonuniform: 1 or 2 — | 71,500

1000 | 0.40 |l (10,10) o0 —_ 56,000 —

1000 | 0.40 || (10,10) | (10,10) Uniform: 2 — | 56,000

1000 | 0.40 | (10,10) | (14,14) | Nonuniform: 1 to 30 — | Infeas. | 52,779
1000 | 0.40 | (10,10) | (15,15) | Nonuniform: 1 to 30 — | 62,083 | 43,268
1000 | 0.40 | (10,10) | (16,16) | Nonuniform: 1 to 30 — | 57,250 | 37,586

Table 3.11: Results for various cases with finite departure capacities (formulation
(I1)) and with interdependent departure and arrival capacities (formulation (I5)).

higher than the value of formulation (I5).

3.3.1 Fixed departure capacities have negligible impact.

In order to check the impact of finite departure capacities and to demonstrate that
formulation (I;), which has more than twice as many variables and three times as
many constraints as formulation (I,), can be also solved in reasonable computation
times, we examined the problems of the first two rows of Table 3.2 with various
departure capacities. In order to make meaningful comparisons, the scheduled arrival

times were kept unchanged. The new data, besides the departure capacities, were the

scheduled departure times or, equivalently, the flight times. Table 3.11 gives results
for various combinations of departure capacities and flight times. Airborne marginal

delay costs were taken to be 75 versus ground marginal delay costs of 50.

It can be seen from Table 3.11 that, when flight times are uniform (e.g., all equal
to 2 time periods) or slightly nonuniform, the differences between finite and infinite
departure capacities are negligible. It is only with strongly nonuniform flight times
that some minor differences appear. (The nonuniform flight times of Table 3.11
were 1 or 2 time periods for F'/F = 0.20 and varied from 1 to 30 time periods for

F'/F = 0.40.) These results justify one in pursuing the investigation of the multi-
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airport GHP with the more manageable formulation (I,). In any event, however,
formulation ([;) is also manageable (running times for the cases of Table 3.11 were

about 2000 CPU seconds).*

3.3.2 Interdependent departure and arrival capacities have

significant impact.

The last row of Table 3.11 shows results for formulation (I5), with interdependent
departure and arrival capacities (Subsection 2.5.3). The feasible region for departure
and arrival capacities was modeled by equations (2.33) and (2.34) (cf. also Figure 2-3).
In order to effect a meaningful comparison, the values of Dimac(t) and Ry maz(t) were
determined by the condition that the intersection point of the two lines in Figure 2-
3 correspond to the Di(t) and Ry(t) of the corresponding formulation (I,). For
instance, in the row of Table 3.11 with Dy (t) = 15 and Ri(¢) = 10, (2.33) and (2.34)
give: 3 X 10 + 15 = 3Rk mae(t), 10 + 3 X 15 = 3D aa(t), 50 that Dy mee(t) = 18.33
and Ry maz(t) = 15.

Table 3.11 shows that the cost savings which can be achieved by formulation (I5)
over formulation (I;) are very significant, about 35-40%. The extra degree of freedom
that one can achieve by modifying, in a real-time basis, the mix between departure

and arrival capacities, seems to be well worth pursuing.

3.4 Model with flight cancellations.

This section presents results pertaining to formulation (I3) of Subsection 2.4.1.

4The justification in pursuing formulation (I3) rather than (I;) is not in the fact that the optimal
values vr, and vy, are very close (this would be open to the objection concerning the proximity of
vp, and vy;), but in the fact that the optimal solution of (I;) violates only a few departure capacity
constraints.
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3.4.1 Impact of cancellation costs.

Table 3.12 gives results for selected cases from Table 3.2, but for formulation (L), and
for various capacities and cancellation costs M. The rows with “infinite” cancellation
costs correspond to formulation (L;) and are taken from Table 3.2. All marginal

delay costs were equal to 50.

These results strongly support the conclusion that, for cancellation costs greater
than 100 times the marginal delay cost (i.e., here, M > 5000), no flight is ever
cancelled, so that models (I;) and (I3)° give the same results. For cancellation costs
greater than 20 times the marginal delay costs (M > 1000), few flights are cancelled,
so that the optimal values of (I;) and (I3) are very close. Finally, for cancellation
costs less than 10 times the marginal delay cost (M < 500), more flights are cancelled
and significant differences between (I,) and ([;) emerge. Note also that, in that
last region of cancellation costs, the slope of the optimal value as a function of the

cancellation cost becomes quite abrupt.

Nonuniform capacities.

Table 3.13 gives results concerning cases with nonuniform arrival capacities. (Cf. the
discussion in Subsection 3.1.3 explaining why some network effects are expected in

this case.) It can be seen that gaps between vp and vy are significant.

Three cost classes.
As explained in Subsection 3.1.3, the main reason why network effects were found to
be insignificant was the assumption that all cost functions are identical. In order to
check this, we ran some cases with three classes of costs: 40% of all flights had cost

100, 40% had cost 50, and 20% had cost 20, corresponding to the relative costs of large,

medium-sized, and small aircraft, respectively. Aircraft performing continued flights

5Although the results in Table 3.12 are for (L3) rather than (I3), one can draw conclusions
concerning (I3) since the investigation of Subsections 3.1.2-3.1.3 showed that network effects (hence,
a fortiori, gaps between vy, and vy,) are insignificant when all cost functions are identical.
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F | F'/F | Capacities M vp, | tp, vr, | tr,
1000 | 0.60 all 11 1000 | 70,300 | 297 || 70,300 | 479
1000 | 0.60 all 10 1000 | 117,000 | 286 || 117,000 | 475
1000 | 0.60 all 08 1000 | 240,700 | 280 || 241,805 | 524
1000 | 0.60 all 06 1000 | 402,600 | 274 | 403,476 | 513
1000 | 0.60 all 04 1000 | 582,300 | 272 || 583,417 | 484
1000 | 0.60 all 11 100 | 28,700 | 283 28,700 | 498
1000 | 0.60 all 11 1000 | 70,300 | 297 || 70,300 | 473
1000 | 0.60 all 11 10000 | 84,200 | 276 || 84,300 | 444
1000 | 0.60 all 11 oo | 84,200 | 242 | 84,300 | 377
2000 | 0.20 all 14 500 | 77,500 | 652 77,500 | 803
2000 | 0.20 all 14 1000 | 94,000 | 691 94,000 | 922
2000 | 0.20 all 14 5000 | 96,300 | 717 || 96,300 | 931
2000 | 0.20 all 14 co | 96,300 | 664 || 96,300 | 731
2000 | 0.40 all 14 500 | 73,100 | 815 || 74,983 | 1020
2000 | 0.40 all 14 1000 | 86,100 | 690 86,372 | 1102
2000 | 0.40 all 14 5000 | 88,400 | 675 | 89,933 | 1176
2000 | 0.40 all 14 oo | 88,400 | 652 || 89,933 | 973
3000 | 0.60 all 17 100 | 38,250 | 1119 || 38,693 | 1911
3000 | 0.60 all 17 500 { 71,800 | 1128 72,240 | 1708
3000 | 0.60 all 17 750 | 81,000 | 1148 81,338 | 1931
3000 | 0.60 all 17 1000 | 87,000 | 1187 || 87,156 | 2114
3600 0.60 all 17 16600 | 90,200 | 1248 || 96,550 | 3767
3000 | 0.60 all 17 oo | 90,200 | 1166 || 96,550 | 2547
3000 | 0.80 all 18 100 | 36,600 | 1114 38,042 | 1846
3000 | 0.80 all 18 500 | 71,500 | 1140 71,559 | 2320
3000 | 0.80 all 18 750 | 78,700 | 1128 || 78,707 | 2693
3000 | 0.80 all 18 1000 | 80,500 | 1235 || 82,214 | 2900
3000 | 0.80 all 18 10000 | 80,500 | 1230 || 84,250 | 3227
3000 | 0.80 all 18 oo | 80,500 | 1180 || 84,250 | 3072

Table 3.12: Results for various cases with flight cancellations.
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F | F'/F | Cap. M vp tp v tr

3000 | 0.80 || nonun. | 500 (f 232,800 | 1142 || 252,045 | 1973
3000 | 0.80 | nonun. | 750 [f 302,700 | 1200 || 330,040 | 2217
3000 | 0.80 | nonun. | 1000 || 366,200 | 1215 || 403,127 | 2228

Table 3.13: Results for various cases with flight cancellations and nonuniform capac-
ities.

F F'/F Cap. M VD, tp, Vi, ir,

3000 | 0.60 | nonun.| 500 | 305,690 | 1236 || 373,271 | 2099
3000 | 0.60 | nonun.| 750 || 385,830 | 1253 | 491,791 | 2219
3000 | 0.60 | nonun. | 1000 | 460,230 | 1305 || 601,331 | 2332

Table 3.14: Results for various cases with flight cancellations and three cost classes.

were generally assigned to the large- or medium-cost category. Results are shown in

Table 3.14. It can be seen that the differences are quite significant (22-27%).

3.4.2 A heuristic.

As noted in Subsection 3.1.2, the optimal solution of (L;) typically has only a small
————npumber-of flights with-noninteger-values:—This-observationprovided-the-metivation-
for the development of a heuristic which finds a feasible solution of the integer pro-
gram (I3) starting from a feasible solution of (L3). The previous subsection (3.4.1)
showed, on the basis of computational experience, that it is easy to solve (L3) (cf.
the computation times ¢z, in Table 3.12). The next subsection (3.4.3) will show that,
when one applies the heuristic to the optimal solution of (L3), one gets a “good”

feasible solution of (I3).

The heuristic will be described first verbally in rough outline; then an algorithmic

presentation will be given.
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Consider a feasible solution {vs; : f € F,t € T} U {z; : f € F} of (L) and
denote by ® the set of “problematic” flights f € F, i.e., the set of flights for which
some integrality constraint is violated. The heuristic gives a “rounding” scheme for
flights in @ which leaves undisturbed, as far as possible, the remaining flights (which
already satisfy integrality). The basic idea of the heuristic is to treat each flight in @

once for all.

The heuristic starts by partitioning ® into classes, each class corresponding to an
aircraft and containing all and only the flights of  scheduled to be performed by that
aircraft. The heuristic treats each class separately; the order in which the classes are

treated is more or less arbitrary.

Each class is treated in the following way. The flights in the class are examined
one at a time, in the order in which they are scheduled to be performed by the aircraft
defining the class. For each specific flight ¢, the heuristic takes the following actions.
(It will help the reader at this point to refer to formulation (I5) in Subsection 2.4.1.)
For each time period ¢ at which ¢ can be allowed to land, the heuristic computes the
available “capacity slacks” (i.e., the slacks of constraints (2.18)) Ryeg (t) — Lsehg=kg Vfts
which will be denoted by Sy(t). (If some vs; have already been updated by new
values, then the new values are used in the computation of the capacity slacks.) It

can be seen that, if S4(¢) > 1 — vy, then it is possible to assign flight ¢ to period ¢

without violating the corresponding capacity constraint. If this is possible for no t,

then flight ¢ is cancelled and we are done with it. Otherwise, i.e., when there are time
periods to which it is possible to assign flight ¢ without violating the corresponding
capacity constraint, flight ¢ is assigned to the earliest such period, 7. (Recall that
this assignment is made once for all.) After this asssignment, all constraints involving

flight ¢ are satisfied, with the possible exception of the coupling constraints.

In order to deal with the coupling constraint linking flight ¢ with its next flight
¢ (if such a next flight exists), the heuristic removes certain time periods from the

set of time periods at which ¢ can be allowed to land, and proceeds to examine ¢.

The removed time periods are those which would violate the coupling constraint in
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question if ¢ were assigned to them (given that ¢ has already been assigned to ). It
can be seen that, if flight ¢ has a previous flight ¢', the coupling constraint linking ¢’
and ¢ need not be dealt with while examining flight ¢, because it has already been
dealt with when examining flight ¢ (since ¢ is the nezt flight to é'.)

As pointed out above, this was only a rough outline, and a more rigorous presen-
tation will be given now. The presentation will be given for the case in which, when
a flight is cancelled, the next flight scheduled to be performed by the same aircraft is
not affected. The other case, in which the next flight is also cancelled, can be treated

mutatis mutandis.

BEGIN

Define @ :={p € F: (24 ¢ {0,1}) V (3t)(vg: ¢ {0,1})}.

Partition @ into its equivalence classes corresponding to the equivalence relation
“is performed by the same aircraft as”: & = Up—y 8y

Order each class according to the order in which the flights in the class are sched-
uled to be performed by the aircraft defining the class: ®y = {Dy1,--- ,¢,2,,5(,,,)}.

Order the classes, e.g., in decreasing order of the cost of their first flight, and
break ties, e.g., according to the increasing order of scheduled arrival times for first
flights.

FOR 4% =1TO ¥ DO:

"FOR¢{=1TO Z(y) DO:

Set ¢ = dye.
IF ¢ =1 THEN:
Define 1, := 7.
IF ¢ has a previous noncancelled flight ¢’ THEN:
Remove from 7T, those t that are smaller than
T + gg — s (because, if ¢ were assigned to

such a t, then the coupling constraint linking ¢
and ¢’ would be violated).
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END IF
END IF
Define the Capacity slacks Sy(t) := Rk;(t)"Ef:k;:k; Vg, t € Ty,
Define Ty :={t € T, : Sy(t) > 1 — Vgt )
IF 7, = 0 THEN

Cancel ¢: Put zy = 1,v4, = 0,% € 1.

CONTINUE ¢
END IF
Assign current flight to 7, the smallest element of Ty set z4=
0,v4r = 1,04 = 0,¢ € T2\ {7}.
IF ¢ has a next flight 4 THEN:

IF 7 —rg—ss>g; AND ¢ ¢ & THEN

Include ¢ in @y as ¢y ey and modify subse-

quent indices ¢ accordingly.

END IF
Deﬁnef’;:{te%“:t—r&ZT—w—sqg}.

END IF

CONTINUE ¢

CONTINUE 3
END

3.4.3 Performance of the heuristic.

Table 3.15 repeats the main part of Table 3.12 but also has a column giving the
objective function value vy, of the feasible solution found by the heuristic. Of course,
one always has:

ng S vLs S vI;; S vHs' (3'5)
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F | F'/F || Capacities M VD, VL, VH,
1000 | 0.60 all 11 1000 || 70,300 | 70,300 | 78,500
1000 | 0.60 all 10 1000 || 117,000 | 117,000 | 125,450
1000 | 0.60 all 08 1000 || 240,700 | 241,805 | 253,750
1000 | 0.60 all 06 1000 || 402,600 | 403,476 | 411,500
1000 | 0.60 all 04 1000 || 582,300 | 583,417 | 586,700
1000 | 0.60 all 11 100 || 28,700 | 28,700 | 30,250
1000 | 0.60 all 11 1000 (| 70,300 | 70,300 | 78,500
1000 | 0.60 all 11 10000 | 84,200 | 84,300 | 240,700
1000 | 0.60 all 11 oo || 84,200 | 84,300 —
2000 | 0.20 all 14 500 (| 77,500 | 77,500 | 82,000
2000 | 0.20 all 14 1000 || 94,000 | 94,000 | 103,300
2000 | 0.20 all 14 5000 || 96,300 | 96,300 | 165,200
2000 | 0.20 all 14 oo || 96,300 | 96,300 —
2000 | 0.40 all 14 500 || 73,100 | 74,983 | 75,800
2000 | 0.40 all 14 1000 || 86,100 | 86,372 | 93,650
2000 | 0.40 all 14 5000 || 88,400 | 89,933 | 168,900
2000 | 0.40 all 14 oo | 88,400 | 89,933 —
3000 | 0.60 all 17 100 || 38,250 | 38,693 | 42,350
3000 | 0.60 all 17 500 | 71,800 | 72,240 | 84,600
3000 | 0.60 all 17 750 (| 81,000 | 81,338 | 95,000
3000 | 0.60 all 17 1000 || 87,000 | 87,156 | 130,300
3000 | 0.60 all 17 10000 90,200 . 96,550 | 667,750
3000 | 0.60 all 17 oo | 90,200 | 96,550 —
3000 | 0.80 all 18 100 || 36,600 | 38,042 | 58,900
3000 | 0.80 all 18 500 | 71,500 | 71,559 | 83,350
3000 | 0.80 all 18 750 || 78,700 | 78,707 | 106,800
3000 | 0.80 all 18 1000 || 80,500 | 82,214 | 111,350
3000 | 0.80 all 18 10000 || 80,500 | 84,250 | 509,900
3000 | 0.80 all 18 oo || 80,500 | 84,250 —

Table 3.15: Performance of the heuristic.
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It can be seen that vg, is quite close to vy, (hence to vy,) for small cancellation
costs. For large cancellation costs, however, the heuristic performs poorly. This was
to be expected, because the heuristic will inevitably cancel some flights, and these
will inflate the objective function value if the cancellation cost is excessive. This is
not worrisome, however, since, as was pointed out in Subsection 3.4.1, for cancel-
lation costs above 1,000 few flights are cancelled, so that for such high cancellation
costs neither formulation (I3) nor the heuristic have much practical use compared to

formulation (I).

3.5 Summary of results.

This chapter has reached several results pertaining to the static deterministic multi-

airport GHP, and it is useful to put these results in perspective in a compact summary.

(1) In the general case (when cost functions differ), network effects, defined as
the difference between the optimal objective function values of the integer and the
decomposed problems, can be large (Table 3.14). Network effects can also be large

when airport capacities are not uniform (Table 3.13).

(2) In the special case where all cost functions are identical, network effects are of

small magnitude (Tables 3.1, 3.2, 3.4, 3.5, 3.6).

~ (3) However, even when all cost functions are identical, the optimal solution of the
decomposed problem typically violates a large number of coupling constraints and is
P g g

thus useless for practical purposes (Table 3.9).

(4) The optimal ground holds resulting from the integer program entail a cost

much lower than that resulting from applying a FCFS heuristic (Table 3.10).

(5) In view of (2), on the one hand, and of (3) and (4), on the other hand, one
must carefully distinguish the magnitude of network effects from their importance:

network effects can be small but are usually important.

(6) Increasing the allowable upper bounds on delays has little effect on the optimal
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objective function value (Table 3.7).
(7) Finite but fixed departure capacities have negligible impact (Table 3.11).

8) The possibility of having interdependent departure and arrival capacities can
g P

result in very significant cost savings (Table 3.11).

(9) As far as the model with flight cancellations is concerned, high cancellation

costs are impractical because they result in no flights ever being cancelled (Table 3.12).

(10) The heuristic which finds a feasible solution of the IP with cancellations on
the basis of the optimal solution of the LP relaxation performs quite well for low

cancellation costs (Table 3.15).
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Chapter 4

The dynamic GHP: formulations.

This chapter presents four formulations for the dynamic deterministic multi-airport
GHP and one formulation for the dynamic probabilistic multi-airport GHP. The chap-
ter is divided into two sections, dealing with the deterministic and the probabilis-
tic problem, respectively. Section 4.1 gives four dynamic deterministic formulations
which are generalizations of formulations (I;)-(I,) given for the static deterministic
GHP in Chapter 2. There is a complication, however, arising from the fact that
airborne delays cannot be completely avoided in the dynamic case, even if departure
capacities are infinite. Section 4.2 presents a formulation for the static probabilistic

GHP and extends it to the dynamic case.

4.1 The dynamic deterministic GHP.

4.1.1 Notation.

In the dynamic GHP, decisions are not taken once for all at the beginning of the day;
decisions are instead taken at! various time periods 7 € 7' C T. 7' is the set of
decision time periods. At each decision time period 7, denote by F, C F the set of

flights for which decisions can be taken; i.e., the set of flights not having yet landed

!By “at” I will understand “just before”. Thus initial decisions are taken just before time period
1, and final decisions may be taken as late as just before time period T.
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at! 7. Partition F, into F¥, the set of flights not having yet taken off at T, and F2,
the set of flights in the air at 7.

The reason why it makes sense to take new decisions at 7 is that one has new
departure and arrival capacity forecasts Dj(t), Rf(t), for t € T,:={r,.. .,T}. Note
that these capacity forecasts extend over the remainder of the time horizon, until time
period T, rather than just until the next decision time period #.2 It will be assumed
that these capacity forecasts are perfectly accurate between decision time periods. In
other words, the actual airport capacities Di(t), Rx(t) will be equal to DJ(t), RL(t)
forte{r,...,# =1}, 7€ T".

In analogy with the notation of Chapter 2, we introduce the following decision
variables: g7, f € F?, is the ground delay of flight f as decided at ; a;, f € Fryis
the airborne delay of flight f as decided at T; ufy, f € Fi,t € deﬂ’I;, is 1 if flight f
is decided at T to depart at® ¢, and 0 otherwise; and vin f € Fryt € TpNT,, is 1if
flight f is decided at 7 to land at® ¢, and 0 otherwise.

Finally, let G4, f € F, be the actual number of time periods (not a variable) that
flight f was held on the ground, and Ay, f € F, be the actual number of time periods
(not a variable) that flight f was held in the air. The value of G is determined at
the time f departs, and the value of /if is determined at the time f lands. The final
cost of a dynamic policy will be Zfef(cfeé'f + c‘}flf).

Table 4.1 summarizes the above notation for reference purposes. Some symbols

from Table 2.1 will also be freely used.

?An alternative way of modeling the dynamic deterministic problem would be to assume that the
capacity forecasts at a decision time period extend only until the next decision time period (and are
perfectly accurate). This way would enable one to solve larger problems, as explained in Subsection
2.3.2 (p. 37), but would probably often create infeasibility, since the rest of the time horizon (from
the next decision time until the end of the day) would not be taken into account. Moreover, one
often does not know in advance when the next information update will occur. For these reasons,
this alternative way will not be pursued in the sequel.

3This “at”, of course, is not understood as “just before”!
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Symbol Denotation
T! Decision time period previous to r.
7 Decision time period next to r.

TCcT Set of decision time periods .

T, ={r,...,T} | Set of remaining time periods.

F.CF Set of flights not having yet landed at?® 7.
Fe Set of flights on the ground at .
Fe Set of flights in the air at 7.
7(®) Departure capacity forecast at! = for airport k at’ period ¢.

Ri(¢) Arrival capacity forecast at T for airport k at period .

g7 Ground delay decision variable at 7 for flight f.
a} Airborne delay decision variable at 7 for flight f.
u%, Departure assignment decision variable at 7 for flight f.
v}, Arrival assignment decision variable at 7 for flight f.
Gy Actual ground delay of flight f (not a variable).
A f Actual airborne delay of flight f (not a variable).
Er, Excess at 7 of airport k at period ¢ (p. 79).
aj Unavoidable airborne delay of flight f in the air at = (p. 80).

Table 4.1: Notation for the dynamic deterministic GHP.
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4.1.2 A first dynamic deterministic formulation.

We present now a dynamic formulation which extends the static formulation (1) of
Subsection 2.2.3. The dynamic formulation consists in solving, at each decision time

period 7, the following pure 0-1 integer program:

(If) min Yiers c597 + Sser, cia}

s.t. Zfe}',’:k;‘:k uf, < Di(t), (k,t) e K xT,; (4.1)
Zfeﬁ:r:;:k vi < Ri(t), (k1) e K x Ty (4.2)
T (43)
Swerzor =1,  f€Fy (4.4)
g +a% —sp < g7, fle FFnFs; (4.5)
Gp+ap—sp<gj, feFNFy (4.6)
a} >0, feF, (4.7)
u%,, v, € {0,1}, (4.8)

where:
97 = Leerpnr, tu5 — ds, € T (4.9)
a; = Zte?}ﬂrﬂ; i —rs—g;, fEFY (4.10)
a; = Efelj}ahﬁ v, — T — ‘@’},' ferF;. | (4.11)

Several comments are in order. The whole formulation presents a dichotomy
necessitated by the fact that flights on the ground at 7 and flights in the air at 7 must
be treated differently. The objective function is a sum of two terms, corresponding
to the ground delay costs of flights on the ground and to airborne delay costs of all
flights in F,. Similarly, the departure capacity constraints (4.1) and the departure
assignment constraints (4.3) refer only to flights on the ground, while the arrival
capacity constraints (4.2) and the arrival assignment constraints (4.4) refer to all

flights in F,. The coupling constraints are also divided into two categories because,
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for the continued flights f' which are already in the air at 7, the ground hold G has
already been determined: it is a number, not a decision variable (constraints (4.6)).
Similar remarks hold for the expression of the delay decision variables a} in terms of

the assignment decision variables (constraints (4.10) and (4.11)).

The integer program (I}) is identical with the static formulation (I1), because
Fi=F{ =F and T; = T. Having solved the program (I7), one solves the program
(I7) corresponding to the next decision period # by taking as inputs D}(¢), Ri(t), Tz,
and by updating the flight sets as follows:

7= FIN{f € F2:dy + 4} < 7} (4.12)

F= (PN €FT rpt Gpta} <FHU{F € FL :(dg 437 <#)(rs+g5+25> )}, (4.13)

where g7 and @} are the optimal values returned by (I7). In words, (4.12) simply
says that the new set of flights on the ground is equal to the previous set of flights
on the ground minus the flights that were assigned by (I7) to leave before the new
decision period #. Similarly, (4.13) says that the new set of flights in the air is equal
to the old set of flights in the air minus any flights in that set that were assigned
to land before the new decision period, plus any flights that were previously on the
ground, were assigned to depart before the new decision period, and were assigned to

- land at or after it. - - )

The final cost resulting from the above dynamic formulation is 3 rex(c} G ﬁ-c‘}fi 7)s
where A ¢ is the final airborne delay of flight f. At 7 one updates the cost by adding
to it the sum of c}g} for f € {f € F? : ds + §7 < #} (i.e., flights which were on the
ground at 7 but left before #), and the sum of cta} for f € {feF? :rf+éf+d; <
FIU{f €FZ :r;+§7+4a} <+} (i.e., flights that either were in the air or were on the
ground at 7 and landed before #). One also sets é’f = g} and Af = 4} for flights in

the above sets.

Note that the size of formulation (I7) decreases as T increases, because the sizes

of the flight sets and of the time set decrease. An interesting feature of formulation
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(I7) is that decisions can be updated or overruled as long as they have not been
implemented. For instance, aircraft can be assigned ground or airborne delays smaller
or larger than what they had been previously assigned, and aircraft not having yet
taken off can be given priority over aircraft already in the air. The last possibility is
not expected to appear often in the optimal solution, given that ¢ is higher than ¢§.
Nevertheless, in practice one would almost never want to deal with this possibility,
so formulation (I7) may be too general. The second dynamic formulation, presented

below, always gives aircraft in the air priority over aircraft not having yet taken off.

4.1.3 A second dynamic deterministic formulation.

The second dynamic formulation is a generalization of the static formulation (I2)
(Subsection 2.3.2), which assumed infinite departure capacities and eliminated air-
borne delays. In the dynamic case, however, airborne delays cannot be completely
eliminated even if departure capacities are infinite. This is because, at a given decision
time, the new arrival capacity forecasts may be significantly reduced with respect to
the forecasts of the previous decision time. Then it can happen that even the number
of aircraft already in the air exceeds the new capacity forecasts, so that some of these

aircraft may have to wait in the air when they arrive at their destination.

For a given decision time period 7, define the ezcess at airport k and time period

t, denoted by E7,, as the number of aircraft currently in the air which will arrive at

k at t minus the currently forecasted capacity of k at ¢t. At each decision time period
7, one needs to do the following preliminary calculations in order to find what the

excesses EJ, are:

BEGIN
FORk=1TO K DO:

T .
Ek -1 — Ek,r—l :

td

FORt=7TO T DO:
Ef, = maX(EI:,t-vO)‘*‘I{fEf: : (k}l:k)(rf’*'g},:t)}l—RZ(t)-
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CONTINUE ¢

CONTINUE &
END

E]’._, are the excesses calculated at 7/,% the decision time previous to 7. These
previously calculated excesses are the actually realized excesses, since capacity fore-
casts at 7' are accurate until 7 — 1. Any positive excess at a time period t — 1 is
transferred to the next time period t. As a result of the above preliminary calcu-
lations, if Ef, < 0, then —Ef, is the available arrival capacity of airport k at time
period ¢, i.e., the currently forecasted capacity minus the number of aircraft that are
already in the air and will arrive at & at ¢t. On the other hand, if Ef, > 0, then there
is no available capacity at k at ¢, and the best one can do, supposing that aircraft in
the air have priority over aircraft on the ground, is to not assign any of the aircraft

currently on the ground to arrive at & at ¢.

Another preliminary calculation which needs to be carried out at each decision
time period concerns the unavoidable airborne delays of flights already in the air, aris-
ing when the new capacity forecasts are not sufficient to accommodate these flights.
These delays, which will be denoted by a} (numbers, not variables), will be needed for
the coupling constraints and for the calculation of the total cost. They are calculated

by means of the excesses EJ, in the following way:

BEGIN
FOR f € F* DO:

af = a}'.s
CONTINUE f

FOR k=1 TO K DO:

FORt=7TO T DO:

At decision time 1, one begins with E,=0.
SAt 7 = 1, one begins with a}=0.
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IF Ef, > 0 THEN

Select Ef, flights in {f € F7 : (k3 =k)(r;+47 +af=t)}

and set at = af + 1 for them.

END IF
CONTINUE ¢

CONTINUE &
END

The selection of the flights to be delayed depends on the arrival queueing discipline,
usually FCFS.

We are now in the position to give the second dynamic deterministic formulation,

with infinite departure capacities:

(I7) min Y rers €97
s.t. Zfe?ﬁ:k;:k v;, < max(—Ef,0), (k,t)e K x T, (4.14)
LteTent, Ve = 1, feFy (4.15)
gy — S < G5y fle FFnrs (4.16)
Gy + af —sp < g7, fle FFnFy (4.17)
v; € {0,1}, (4.18)
where:

= Y tf,—rsfeFL (4.19)

teTANT,

Constraints (4.14) say that, if Ef, < 0, then the number of aircraft assigned to
arrive at airport k at time period ¢ must not exceed the available excess capacity
—Ef,; whereas, if Ef, > 0 (i.e., no available capacity at k at t), then v}, will be 0 for
all f that could arrive at k at ¢, so that no new aircraft will be assigned to arrive at
k at t. Note that decisions are taken only for flights on the ground at 7. Flights in

‘the air at 7 influence the decisions by means of (4.14) (by determining the excesses)
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and of (4.17) (their airborne delays enter into the coupling constraints).

The total cost is calculated and updated at each decision time period in a way
analogous to that explained in the previous subsection for formulation (I7). Note also
that, by an argument completely analogous to that presented in Subsection 2.3.1 for
the static case, one can show that, if departure capacities are infinite and % > ¢4,
then, if formulation (I]) without airborne delays as decision variables has an optimal
solution, then it has an optimal solution in which, at every decision period 7, a} =0

for all flights on the ground at .

4.1.4 Flight cancellations.

For the sake of completeness, we will give now the straightforward extensions of
formulations (I]) and (I7) for the case where flight cancellations are allowed. The
extensions are completely analogous to the way in which the static formulations (I3)
and (I,) extended (I;) and ([7), respectively (cf. Section 2.4). Of course, only flights
on the ground may be cancelled; moreover, cancellations are irreversible: once z%, the

cancellation variable corresponding to flight f, is 1, flight f is removed from F;.

A third dynamic deterministic formulation.

Formulation (I) extends (I7).

(1) min Lrerg(czgy + (Mg + ciry)z])

s.t. Zfefg:k;zk v}, < max(—Ef,0), (k,t) € K x Tp;
2 + Ete’l}“nT, v =1, feFs;
gy —sp+ (sp+rp —r14)2h < g7, fleFinFy

gr—sp+(sp+rp+Gs+1)25 < gi+(rs+Gr+1)2;, f' e FanNFY;
Gy + af — sp < g7, f e FnFs

v}, 27 € {0,1},

where g} are given by (4.19).
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A fourth dynamic deterministic formulation.

Formulation (I]) extends (I7).

(I{) min Yrerslcigy + (My + cids + c3(rs — df)) 27l + Ty, ciaz

s.t. 2 rergind=k Uz < DE(t), (k,t) € K x T;
2 rerakg=k V5 < RE(1),(k,t) € K x T

z; + Zteffdnff uh, =1,f € Fg;

2 + Zteq}anq; v, =1,f € Fg;

Ete'f;n'f, v, =1,f € F}
gptap —spt(sptrp—re)zp <gp, f€FINFEG
gptau—sp+(sptrp+ Gi+1)25 <gi+(rs+Gy+1)2, flEF,NFE;
Gp +a} —sp < g}, f € F' N FE
a; 20, f € Frj

u%y, v, 27 € {0,1},

where g7, a} are given by (4.9), (4.10), and (4.11).

4.2 The dynamic probabilistic GHP.

~One way to model the case of probabilistic capacities is by considering that capacity

forecasts take the forms of various scenaria, each scenario coming with a given prob-

ability of realization. In symbols, there are L possible capacity scenaria, and scenario

I, having probability p; (X/~; pi = 1), is denoted by RL(t), (k,t) € K x T. Note that a

capacity scenario involves capacity forecasts for all airports of the network. In other

words, p; is the probability that airport 1 will have capacities R!(t), t € T, and that

airport 2 will have capacities R5(t), t € T, and so on. This is because capacities at

various airports may not be independent, especially for airports close enough to have

similar weather.
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In the probabilistic GHP, static policies are subject to a “paradox” which does
not appear in the deterministic GHP. At the beginning of the day, one knows the
possible capacity scenaria and their probabilities of realization, but of course one
does not know which scenario will be realized. If the problem is static, one must
make irrevocable decisions concerning ground holds at the beginning of the day. But
sooner or later some scenario will be realized, and at that point one should normally
take into account the new information and update ground holds. So the paradox of
the static probabilistic GHP is that new information will inevitably become available
but will not be taken into account. The static deterministic GHP encounters no
similar problem because, by assumption, capacity forecasts are perfectly accurate

and no new information will become available.

The above considerations show that static probabilistic formulations may be of
somewhat limited practical interest in themselves. Nevertheless, they can be used
as building blocks for dynamic probabilistic formulations. This is entirely analogous
to the way in which the static deterministic formulations' of Chapter 2 were used
as building blocks for the dynamic deterministic formulations of Section 4.1. As an
example, we will present below, for the case of infinite departure capacities, a static
probabilistic formulation and its dynamic extension.
4.2.1 A static probabilistic formulation.
Define the decision variables gy, equal to the ground delay of flight f, and vjet, equal
to 1 if scenario [ is realized and flight f lands at ¢, and equal to 0 otherwise. Denote
also by a? the airborne delay of flight f if scenario [ is realized. Under scenario l, the
total delay of flight f, g; + a,ie, is equal to the difference between the actual arrival

time, Ztelz}a tv‘ﬂ, and the scheduled arrival time, ry, so that:

ay =3 toh,—ri—g;, FEF, le{1,...,L}. (4.20)
te?}“

84



Assuming infinite departure capacities, we have now the following static probabilistic

IP formulation:

(Ip) min Efe}'(c?gf + ¢} ZIL=1 pzaﬁe)
s.t. Zf,k}‘:k v’ﬂ < Rfc(t), (k,t)eKX xT,le {1,...,L}; (4.21)

Srerp v = 1, feF,le{l,...,L}; (4.22)
gp +ah — sp < gy, fle Fle{l,...,L} (4.23)
gr €{0,1,...,Gs},  feF; (4.24)

v, € {0,1}. (4.25)

Although formulation (Ip) looks superficially similar to previously presented formu-
lations, it has several peculiarities which need mentioning. By solving (Ip), one gets
values for g¢ and v’,. The values for g; are the ground holds which will be implemented
no matter which capacity scenario is ultimately realized, since we are examining the
static case. On the contrary, which values v}t will be implemented will depend on the
capacity scenario that will be realized. If, for instance, scenario 3 is realized, then
flight f will land at the time period ¢ for which v%, is equal to 1. Therefore, it can be
seen that g; cannot be expressed in terms of vﬁct: there are two independent sets of
decision variables. Moreover, (Ip) is not a pure 0-1 IP formulation, since g; are not
binary variables.

Aﬁother importaﬁt comment concerns the coupling constraints (4.23). These must
ensure that the ground holds g¢, which are irrevocably decided at the beginning of the
day, will be feasible no matter which capacity scenario is ultimately realized. But the
capacity scenario which will be realized may affect the airborne delays of continued
flights, which may in turn affect the ground delays of their next flights. This problem
is solved, in (4.23), by having the ground delay of a continuing flight be at least equal

to the mazimum excess delay of its previous flight over all possible capacity scenaria.®

8g; > g5 + a}, —sp,l€{1,...,L}, is equivalent to: g; > max(gs + a.'f, —sple{l,...,L}).
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A final remark concerns the size of formulation (Ip). There are LKT +(L+1)F +
LF' constraints, and the number of decision variables is at most F+YF ¥ rer( A’f +
1), where A’f is an upper bound on the airborne delay of flight f under scenario I. Such
an upper bound cannot be arbitrarily imposed, but can be calculated for given arrival
profiles and capacity scenaria. In the worst case, A’f =T —ry will do. Therefore, the
number of constraints and the number of variables can become excessive, expecially

if L is large, but may remain manageable for small L.

The static probabilistic formulation (Ip) generalizes the static deterministic for-
mulation (I;) but has infinite departure capacities (note that airborne delays as deci-
sion variables are allowed). Extensions of the other static deterministic formulations

presented in Chapter 2 (e.g., with flight cancellations) are straightforward.

4.2.2 A dynamic probabilistic formulation.

Extending the static probabilistic formulation of the previous subsection to the dy-
namic probabilistic case, in analogy with the exposition of Section 4.1, is rather
straightforward, but there is a minor complication. Thé complication concerns the
way of modeling the additional information that emerges as time goes on. In an
extreme case, one of the possible capacity scenaria is realized at a time § and all un-

certainty is eliminated after that time. In a more realistic case, at various realization

__time periods § € A C T the probabilities of the various scenaria are updated to pf.

In this case the reasonable thing to do is to identify the set of decision time periods
T' with the set of realization time periods A, since it is exactly at realization time

periods that new information becomes available.

The situation can be explained with the help of Figure 4-1, which refers to a
case with L = 3 capacity scenaria and is also the basis of the computational results

presented in Chapter 5.7 At time 7o = 1, one knows that scenaria S1, §2, S3 will be

7As was pointed out above, a capacity scenario includes capacity forecasts for all airports of the
network. Figure 4-1 gives only the parts of scenaria S1, S2, and S3 that correspond to a given
airport.
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ultimately realized with probabilities p]° = py, p3° = (1 —p;)ps, PR = (1—p1)(1—-p2),
respectively. (Moreover, one knows the capacities with certainty until time T1, since
all three scenaria coincide until that time.) So at 7y one solves formulation (Ip) with
p;° as above. Now at time 7; new information is obtained: either scenario S1 is
realized or it is not. This new information gives p*. If S1 is realized, then pt =1
and p;' = p3' = 0. If S1 is not realized, then p]' = 0, pj! = p,, and pJ! =1 — p2. So

at 71 one solves formulation (Ip) with p/* as above.® Similarly at 7.

We give now the dynamic probabilistic formulation corresponding to (Ip). The

notation generalizes that of Subsection 4.1.1 (cf. Table 4.1).

(I7) min  Yiers 397 + Trer, ¢} Siey oy (4.26)
s.t. S feFn kst v, < R (), (k,t)eXXT,, le{1,...,L}; (4.27)
Teetent, vl =1, fer,le{l,...,L}; (4.28)
95 +ah —sp < g7, frfeF'InFele{l,...,L}; (4.29)
Gy +alf — s < g7, fleFnFele{l,...,L};(4.30)
g7 €{0,1,...,Gs}, feF; (4.31)
vl € {0,1}, (4.32)
where:

af = Y tlf-ri—gf, f € Fs,l 67{71,'...,L7}; B (4.33)

tE'I}“ﬂ'E-
af = Y tl-r; -Gy, feFrle{,...,L}. (4.34)

teTpnT,

This concludes the presentation of the dynamic formulations. The next chapter

will present computational results based on the above framework.

80f course at 7; the new scenaria extend from 7, to T (rather than from 1o to T as they did at
To).

87



Capacities
7 3

S1

>

T =1 1 T2 - m=T

Figure 4-1: Modeling additional information over time in the dynamic probabilistic
GHP. There are three possible capacity scenaria: S1, §2, and 3. Overall, S1 has
lower capacities than S2, and $2 has lower capacities than S$3. All three scenaria
coincide between time periods 7o and 7, and scenaria $2 and $3 coincide between
time periods 7, +1 and 7,. At 71, S1is realized with probability p; and all uncertainty
is eliminated. Otherwise (with probability 1—p; ), at 73, 52 is realized with probability
p2 or 53 is realized with probability 1 — p,.
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Chapter 5

The dynamic GHP: results.

This chapter investigates the behaviour of the dynamic multi-airport GHP by means
of computational results based on formulation (I7) of Subsection 4.1.3 and on a
dynamic heuristic generalizing the static heuristic presented in Subsection 3.2.2. The
framework is a case with three capacity scenaria and two realization times, as in the

example of Subsection 4.2.2 (Figure 4-1).

The chapter is divided into three sections. Section 5.1 explains that 15 different
dynamic scenaria can result from the framework of the three capacity scenaria, and
examines the relationships between these 15 dynamic scenaria on the basis of a series
of test cases with 3 airports and 1500 flights. Section 5.2 introduces forecasting meth-

ods (most-prbbable, worst-case), and compares the expected cost of dynamic ground-

holding policies based on these methods. The behaviour of the dynamlc heuristic is

also examined. Finally, Section 5.3 summarizes the results of the chapter.

5.1 Comparing dynamic scenaria.

5.1.1 The goal.

The goal of this section is to gain insight on the behaviour of the dynamic multi-
airport GHP by examining a relatively realistic case with three capacity scenaria

and two realization times (identical with the two decision times), on the model of
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Figure 4-1. In the most general case (see Figure 4-1), one solves first (I;°) with
capacity forecasts equal to S1 or S2 or §3, for t € {1,...,T}. Then one solves (I;)
with new capacity forecasts (e.g., 52 or 53 if the previous forecast was S1), but now
for t € {m,...,T}. Finally one solves (I;?) with yet new capacity forecasts and for
t € {rs,...,T}. In special cases, one may not need to solve (I;), (I3?), or both, if
the capacity forecast does not change. Suppose, for instance, that the forecast at o
is 52 and that S1 is realized at ;. Then one needs to solve (I7*) with forecast S1,
but no new problem needs to be solved at 73, since the forecast will inevitably remain

S1.

A particular combination of (at most three) problems to be solved in the dynamic
case will be referred to as a (dynamic) scenario (not to be confused with a capacity
scenario, which is one of S1, S2, §3). In the example at the end of the last para-
graph, the scenario will be referred to as 2-1, since one solves (I;°) with forecasts
S2 and then (I7') with forecasts S1. Some reflection should convince the reader
that, assuming all branches in Figure 4-1 have nonzero probabilities, there are 15
possible dynamic scenaria that one may have to solve, depending on which capacity
scenaria are forecasted and which are realized. These 15 dynamié scenaria are given

in Table 5.1.

To be quite explicit, the relationship between the “forecast” and the “realization”
columns of Table 5.1 is the following: only a capacity scenario which can be realized
may be forecasted, and any capacity scenario which can be realized may be forecasted.
At 7o, for instance, all three capacity scenaria are possible, so any of them may be
forecasted. At 7y, if S1 is realized, then only S1 can be forecasted, whereas, if S1 is
not realized, then either S2 or S3 may be forecasted. In practice, of course, which
capacity scenario will be forecasted will depend on the probabilities of the branches
in Figure 4-1 and on the forecasting method (e.g., most-probable, worst-case, etc).
Probabilities and forecasting methods will be introduced in the next section; for the

moment we are just examining all possible cases.

We want to examine the possible dynamic scenaria before introducing probabilities
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Dynamic || Forecast | Realization | Forecast | Realization | Forecast
Scenario at 7o at 1 at iy at at ™
1 S1 S1 S1 — S1
1-2 S1 not S1 S2 S2 52
1-3 S1 not S1 S3 53 53
1-2-3 S1 not S1 52 S3 S3
1-3-2 S1 not S1 S3 52 52
2 52 not S1 52 52 52
2-1 52 S1 51 e S1
2-3 S2 not S1 53 S3 S3
2-2-3 52 not S1 52 53 S3
2-3-2 52 not S1 53 52 52
3 S3 not S1 S3 S3 S2
3-1 S3 S1 S1 — S1
3-2 S3 not S1 52 S2 52
3-2-3 S3 not S1 52 S3 53
13-3-2 $3-—}—not-51 —53 §2- 52

Table 5.1: The 15 possible dynamic scenaria (cf. Figure 4-1).
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of realization because there are interesting and insightful comparisons to be made.
As an example, the cost of scenario 3 must be lower than (or equal to) the cost of
scenario 3-3-2, because in 3-3-2 the new capacity forecasts at 7, are lower than the
previous forecasts, so some already departed aircraft may have to wait in the air. In
other cases the comparison is less clear. Compare, for instance, the costs of scenaria
1-2-3 and 1-3-2. At 7 some departed aircraft in 1-3-2 may have to wait in the air,
while this is not the case in 1-2-3. But the departed aircraft in 1-3-2 have probably
had lower ground holds than in 1-2-3, since the previous capacity forecasts were
more optimistic in 1-3-2 than in 1-2-3. There is thus a trade-off between ground

and airborne delay costs, and it is interesting to pursue the investigation further.

5.1.2 Results and discussion.

Computational experiments were performed for four cases with K = 3 airports and
F = 1500 flights. All cases have the same scheduled arrival profile but different
percentages of continued flights, F'/F, ranging from 0.20 to 0.80. The four cases are
comparable, in the sense that cases with lower F'/F are obtained from cases with
higher F'/F by eliminating some connections between flights. All four cases have
slacks equal to 0 and identical arrival capacity profiles in the spirit of Figure 4-1,
with the difference that S2 has a positive slope and S1 is constant (rather than S1
and S$2 having negative slopes, as they have in Figure 4-1). S1is at the infeasibility
| lnmt, and is equalto 11, 10, and 10 aiiricrzrrarftwpréfr timé pref?ioﬂd f&r aérborts i, 2,” aﬁd
3, respectively. The two realization and decision times are 7, = 21 and 7, = 41; the
time horizon has T' = 64 time periods. Ground delay costs are 50 and airborne delay

costs are 75.

The results of the computations are shown in Tables 5.2 and 5.3. It should be
noted that the computations were performed with the LP relaxation (L]) rather than
(I7), because the values of (L3) and (I]) are very close for identical cost functions

(cf. Chapter 3). Nevertheless, rounding mistakes are expected.

After some reflection, one can make the following observations on the basis of

92



Dynamic || No capacity | Cap. updated | Cap. updated Cap. updated

Scenario updates at 71 = 21 only | at 7, = 41 only | at both 7, and

1 50,550

1-2 35,700

1-3 32,250

1-2-3 32,500

1-3-2 35,850

2 35,700

2-1 50,550

2-3 32,250

2-2-3 32,500

2-3-2 35,850

3 32,250

3-1 50,550

3-2 35,700

3-2-3 32,500
| 3-3-2 ' 35,850

1 50,550

1-2 36,100

1-3 32,800

1-2-3 32,400

1-3-2 35,200

2 36,100

2-1 50,550

2-3 ' 1 32,800 I

2-2-3 32,667

2-3-2 35,775

3 32,800

3-1 50,550

3-2 36,100

3-2-3 32,869

3-3-2 34,950

Table 5.2: Values of the 15 dynamic scenaria for F'/F = 0.20 (upper part of the
table) and for F'/F = 0.40 (lower part).
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Dynamic || No capacity | Cap. updated | Cap. updated Cap. updated
Scenario updates at 71 = 21 only | at 7, = 41 only | at both 7, and =
1 63,188
1-2 40,250
1-3 35,750
1-2-3 37,895
1-3-2 38,574
2 40,250
2-1 63,188
2-3 35,750
2-2-3 36,020
2-3-2 40,092
3 35,750
3-1 63,188
3-2 40,250
3-2-3 37,013
3-3-2 38,447
1 70,500
1-2 46,100
1-3 40,150
1-2-3 42,974
1-3-2 45,922
2 46,100
2-1 70,500

12-3 40,150
2-2-3 41,315
2-3-2 44,755
3 40,150
3-1 70,500
3-2 46,100
3-2-3 41,337
3-3-2 46,700

Table 5.3: Values of the 15 dynamic scenaria for F'/F = 0.60 (upper part of the
table) and for F'/F = 0.80 (lower part).
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Tables 5.2 and 5.3. First, the 15 dynamic scenaria fall into two groups, call them
group A and group B. Group A has three subgroups of three scenaria each. Subgroup
Al consists of scenaria 1, 2-1, and 3-1; subgroup A2 consists of scenaria 2, 1-2, and
3-2; and subgroup A3 consists of scenaria 3, 1-3, and 2-3. It can be seen that, for any
of the four values of F'/F, all three scenaria within any of the above three subgroups

have equal values. In symbols, we always have:

V1 =V2-1 =V3_1 > V2 =V1_3 =Vz_3 > U3 = V1_3 = Us_3. (5.1)

Why should this be so? The reason is probably that all scenaria within the above
subgroups (with the exception of the static scenaria 1, 2, 3) have capacity updates
only once, and at a rather early time period (r; = 21 with T = 64). Recall that
all three capacity scenaria coincide until 7. In conclusion, (5.1) seems to say that,
if one can get the correct capacity forecasts early enough in the day, one can almost
completely compensate for incorrect capacity forecasts made at the beginning of the
day. It should be noted that one does not always expect the equalities (5.1) to hold
exactly. For instance, scenario 3-2 can sometimes have a higher value than scenario
2, because some aircraft in the air at 7; may have to incur airborne delays when the

forecast shifts from S$3 to §2.1

The second group, group B, consists of two subgroups of three scenaria each.

Subgroup B2 consists of scenaria 1-3-2, 2-3-2, and 3-3-2; subgroup B3 consists of

scenaria 1-2-3, 2-2-3, and 3-2-3.2 These subgroups are detected by means of the
case F'/F = 0.20 (upper part of Table 5.2), where all scenaria within each of these

two subgroups have equal values. In symbols:

V1-2-3 = V223 = V323 < V1_3_2 = Va_3_2 = V3_3_9, for F’/F = 0.20. (52)

1For an example of a case where (5.1) do not hold exactly, see Table 5.6.

2The reason why the two subgroups of group B were named B2 and B3, rather than B1 and B2,
is that subgroups B2 and A2 (and, similarly, subgroups B3 and A3) share an important feature:
all scenaria within B2 and A2 end in 2. In other words, all six scenaria in these two subgroups
correspond to the case where capacity scenario S2 is ultimately realized.
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Examination of the other three cases for F'/F supports (5.2), although the equalities

become approximate.

The equalities in group B have presumably the same origin as those in group A:
incorrect forecasts are corrected early enough, so that their influence is minimized.
Scenaria within each subgroup of group B (e.g., scenaria 1-2-3 and 3-2-3) differ only

up to time m = 21.

One can also compare scenario 3 with 2-2-3, or scenario 2 with 3-3-2. Here
we have incorrect predictions which are corrected late in the day (at 72 = 41 with
T = 64). It is seen that only minor differences appear. In other words, the values of
scenaria within subgroup B2 are quite close to the values of scenaria within subgroup
A2 (similarly for subgroups B3 and A3). Therefore, it seems that getting the correct
capacity forecasts even relatively late in the day suffices to minimize the impact of

incorrect capacity forecasts made at the beginning of the day.

The main result of this section is that, if one gets the correct capacity forecasts
before the end of the day, then one can, for the most part, compensate for incorrect
capacity forecasts made earlier on. Referring again to Figure 4-1, one can understand
the reason. The difference between different dynamic scenaria is mainly due to aircraft
which may have to wait in the air when the new forecast is lower than the previous
one. Such aircraft are in the air at the current decision time period, so they will arrive
at their destination soon. So the only differences between capacity scenaria that really
matter are the differences in the vicinity of decision time periods. But such differences
are usually small, because the capacity scenaria usually diverge smoothly rather than
abruptly. This is why dynamic scenaria ending in 7 will have values quite close to v;.

What mostly matters is to get the correct forecasts, not when to get them.

96



Range of p; Range of p, Most probable
scenario at g
P> 1/2 0<p, <1 S1
P2 >p1/(1-p1) 52
1/3<p1<1/2 | p1/(1=p1) > py > (1= 2p1)/(1 - p1) S1
P2 < (1—2p1)/(1 —p1) S3
p1 <1/3 p2 > 1/2 52
P2 < 1/2 S3

Table 5.4: Most probable capacity scenario at 7, for various probability combinations
(cf. Figure 4-1).

5.2 Comparing dynamic policies.

5.2.1 The goal.

A dynamic policy is defined as a pair of: (i) a method of forecasting capacity given
probabilistic information (e.g., most-probable, worst-case) and (ii) a method of as-
signing ground holds given a capacity forecast (e.g., by solving one of the formulations
in this thesis). The aim of this section is to investigate the relative efficiency of vari-
ous dynamic policies. Four policies will be examined, corresponding to two methods

of forecasting capacity and to two methods of assigning ground holds.

The two methods of forecasting capacity will be the most-probable forecast and
the worst-case forecast. Referringra.gain to figure 4-1, at time 79 the most-probable
forecast is S1 if p; > 1/2, while it is S2 if p; < 1/3 and p, > 1/2. All possible
cases are given in Table 5.4. Similarly, at 71, supposing S1 is not realized, S2 is most
probable when p, > 1/2. The worst-case forecast, on the other hand, is obviously S1
at 7o and, if S1 is not realized, S2 at ;.

The two methods of assigning ground holds given a capacity forecast will be the

dynamic deterministic’® formulation (I]) of Subsection 4.1.3 and a dynamic FCFS

3It should be clear that we are solving the dynamic deterministic formulation of Subsection 4.1.3
rather than the dynamic probabilistic formulation of Subsection 4.2.2: we are using probabilities
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heuristic (given in Subsection 5.2.3) generalizing the static FCFS heuristic of Subsec-
tion 3.2.2.

The way of assessing these four dynamic policies will be by comparing their ex-
pected values. Subsection 5.2.2 compares the expected values of forecasting methods,

and Subsection 5.2.3 examines the performance of the dynamic FCFS heuristic.

5.2.2 Comparing forecasting methods.

This subsection deals with the two dynamic policies in which capacity is forecasted
by the most-probable or the worst-case method and then ground holds are assigned
by means of the dynamic deterministic formulation (I ). The two policies based on

the dynamic FCFS heuristic will be examined in the next subsection.
For given values of the probabilities p; and p,, the expected value of the most-
probable policy is:

MP = prvppp + (1 = p1)p2vmpiz + (1 — p1)(1 — p2)varpjs, (5.3)

where v(MP|i) is the value of the dynamic policy given that capacity scenario i is
ultimately realized. For instance, if S2 is realized and p, > 1 /2, p2 < 1/2, the most-
probable forecasts will be S1 at 7, and S3 at 7, so that UMP|2 = Vi-3—2. It is seen

that vprp; depends not only on 7 but also on p; and p,.

For given values of the probabilities p; and p,, the expected value of the worst-case

policy is:
WC = pivwen + (1 = p1)p2vwerz + (1 — p1)(1 — p2)vweys. (5.4)

It is easily seen that, for the case of Figure 4-1, Yweop = V1, Uwgjz = Vi-2, and

Ywe|3s = Vi-2-3, regardless of the values of p; and p,.

only to generate the deterministic capacity forecasts.
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In order to compare the dynamic with the static GHP, we also included in the

comparison the expected value of a random-selection static policy:

RS = p1v1 + (1 = p1)pava + (1 — p1)(1 — p2)vs, (5.5)

where v; is the value of scenario i. The random-selection static forecast is defined
by means of a probabilistic event: at 7, one performs an experiment which yields
outcomes 1, 2, and 3, with probabilities p;, (1—p;)p;, and (1—p1)(1—p2), respectively.
If outcome ¢ € {1,2,3} occurs, then the random-selection forecast is S1, and is not

updated at later decision times.

Table 5.5 gives the expected values of the two dynamic policies under consideration
and of the static random-selection policy for typical values of p; and P2 corresponding
to the combinations of Table 5.4. It is seen that the expected values of both dynamic
policies are always very close to the expected value of the random-selection policy and
to each other. It seems, therefore, that both forecasting methods perform equally well.
On the other hand, the dynamic policies seem to result in no significant cost savings

over the static random-selection policy.

These results were expected, given the conclusion of Section 5.1. In fact, varpy;
and vwcy; are always close to v;, so (5.3), (5.4), and (5.5) entail the approximate

equality of MP, W(C, and RS.

5.2.3 Dynamic FCFS heuristic highly inefficient.

The static FCFS heuristic presented in Subsection 3.2.2 can be easily generalized
to the dynamic case. The only (minor) complication is that, at each decision time
period, one must first take care of the next flights of the aircraft currently in the air,

in order to satisfy the coupling constraints. The result is as follows.

BEGIN
Initialize: gy = 0.
FORt=7 TO T DO:
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F'/F || p1 | p2 | Random-selection Most-probable | Worst-case
0.20 || 0.8 10.8 47,442 47,452 47,452
0.20 | 0.8]0.2 47,028 47,586 47,068
0.20 || 0.4]0.8 41,226 41,256 41,256
0.20 || 0.4 0.6 40,812 40,872 40,872
0.20 (04|04 40,398 40,434 40,488
0.20 || 0.4 ] 0.2 39,984 40,002 40,104
0.20 | 0.2]038 38,118 38,158 38,158
0.20 |1 0.2 ] 0.2 36,462 36,486 36,622
0.40 [ 0.8 ] 0.8 47,528 47 512 47 512
0.40 | 0.8 0.2 47,132 47,096 47,068
040 (| 0.4]0.8 41,484 41,276 41,436
0.40 || 0.4 0.6 41,088 40,992 40,992
0.40 | 0.4 0.4 40,692 40,476 40,548
0.40 || 0.4 ]0.2 40,296 40,158 40,104
0.40 || 0.2 ]0.8 38,462 38,441 38,398
0.40 || 0.2 | 0.2 36,878 36,694 36,622
0.60 || 0.8 ]0.8 58,420 58,506 58,506
0.60 || 0.8 0.2 57,880 57,813 58,224
0.60 || 0.4 0.8 48,885 48,918 49,143
0.60 || 0.4]0.6 48,345 48,860 48,860
0.60 || 0.4 0.4 47,805 47,403 48,577
0.60 | 0.4 | 0.2 47,265 47,049 48,295
0.60 || 0.2 | 0.8 4117 44,161 44,161
1+-0:60—-0-21-0.2 41,958 41,669 - 43,330
0.80 || 0.8 0.8 65,382 65,495 65,495
0.80 || 0.8 | 0.2 64,668 64,661 65,160
0.80 (0.4 0.8 55,146 55,286 55,485
0.80 || 0.4 0.6 54,432 55,110 55,110
0.80 [[0.4]0.4 53,718 53,675 54,735
0.80 || 0.4]0.2 53,004 53,076 54,360
0.80 || 0.2 |0.8 50,028 50,214 50,480
0.80 [ 0.2 0.2 47,172 47,268 48,979

Table 5.5: Expected values of dynamic policies and of static random-selection policies
for various probability combinations.
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FOREk=1TO K DO:

FOR f € F2 DO:
IF k¢ = k AND r; + G5 + o5 = t AND f has a next
flight # THEN g; = max(Gy + a5 — s,0). Similarly if
 has a next flight and so on.

CONTINUE f

Define Sp(t) :={f € F2: (k% = k)(r; + g5 = t)}.

Define Si(t) := |Sk(t)]-

IF Si(t) > —Ey(¢) THEN:
Choose Q(t) := Sk(t) + min(E(t),0) flights in Si(t).
FOR f =1 TO Qx(t) DO:

Set gr = 9¢ + 1.
IF f has a next flight f THEN:

IF g¢ > s; THEN:
Set 9; = g7+ 1, and similarly if f has
a next flight and so on.
END IF
END IF
CONTINUE f

END IF

CONTINUE k&

CONTINUE ¢
END

Computations were performed for the same case as in Subsection 5.1.2 (3 airports
and 1500 flights), but only for F'/F = 0.80, and with slacks equal to 1 instead of 0.

The new capacity scenaria are lower, since the infeasibility limit is lower (due to the
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increase of the slack). The new S1 is equal to 10, 9, and 9 aircraft per time period

for airports 1, 2, and 3, respectively.

The values of the 15 dynamic scenaria, both for formulation (I7) and for the
dynamic FCFS heuristic, are given in Table 5.6. It is seen that, as was the case in the
static problem, the FCFS heuristic always results in a cost much higher than what one
can achieve by solving the multi-airport GHP optimally. This is a significant result,
since the dynamic FCFS heuristic is, to some extent, a reasonable approximation of

the essential aspects of current ground-holding practice (cf. Subsection 1.3.1).

Finally, Table 5.7 gives the expected values of all four dynamic policies and of the
corresponding two static random-selection policies for the case under consideration.
It is seen that the two dynamic policies which use the FCFS heuristic perform about
equally well, but perform much more poorly that the two policies which use formu-
lation (I7). Moreover, in accordance with the results of the previous subsection, it
is seen that the dynamic policies result in no significant cost savings over the static

random-selection policies.

5.3 Summary of results.

This chapter has reached the following main conclusions on the dynamic GHP.

(1) If incorrect capacity forecasts made at the beginning of the day are corrected
early enough, then their influence on the total cost of the dynamic problem can be

minimized.

(2) The most-probable and the worst-case methods of forecasting capacities given
probabilistic information perform about equally well, if their performance is measured

by their expected values.

(3) The dynamic policies using either a most-probable or a worst-case forecasting
method perform, in terms of their expected values, about as well as a static random-

selection policy. (Note, however, that the static random-selection policy will have a
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Dynamic No capacity Cap. updated | Cap. updated Cap. updated

Scenario updates at 71 = 21 only | at 7, = 41 only | at both 7, and =
1 151,850
(97,163; 56.3%)
1-2 108,600
(62,814; 72.9%)
1-3 104,500
(60,765; 72.0%)
1-2-3 99,750
(63,805; 56.34%)
1-3-2 103,825
(64,373; 61.3%)
2 108,550
(63,0505 72.2%)
2-1 151,900
(98,034; 54.9%)
2-3 104,450
(61,975; 68.5%)
2-2-3 99,700
(65,194; 52.9%)
2-3-2 103,775
(66,550; 55.9%)
3 104,450
(61,000; 71.2%)
131 151,900 |
(97,347; 56.0%)
3-2 108,550
(63,287; 71.5%)
3-2-3 99,700
(63,307; 57.5%)
3-3-2 103,775

(66,650; 55.7%)

Table 5.6: Values of (a) the dynamic FCFS heuristic, and (b) (in parentheses) the
corresponding exact optimum and the percentage of cost overestimation resulting
from applying the heuristic (overestimation = (value of heuristic/exact optimum)-1).
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F’/F P1 P2 RS MP wcC RSFCFS MPFCFS I’VCFCFS

0.80 | 0.8 0.8 | 90,258 | 90,333 | 90,333 || 143,026 | 142,846 | 142,846
0.80 || 0.8 0.2 | 90,012 | 90,028 | 90,452 || 142,534 | 142,353 141,784
0.80 || 0.4 0.8 | 76,449 | 77,301 | 76,673 || 125,378 | 124,828 124,838
0.80 (1 0.4 0.6 | 76,203 | 76,791 | 76,791 || 124,886 | 123,776 | 123,776
0.80 (| 0.4 0.4 | 75957 | 76,928 | 76,910 || 124,394 | 123,278 | 122,714
0.80 |/ 0.4 0.2 | 75,711 | 76,217 | 77,029 || 123,902 | 123,349 | 121,652
0.80 | 0.2 | 0.8 || 69,545 | 70,390 | 69,842 || 116,554 | 115,804 | 115,834
0.80 || 0.2 0.2 || 68,561 | 69,173 | 70,318 || 114,586 | 113,832 | 111,586

Table 5.7: Expected values of dynamic policies and of static random-selection policies
for various probability combinations.

greater variance than the dynamic policies, since the latter are designed to minimize

the effect of initial incorrect predictions and succeed in so doing, given ( 1) above.)

(4) Finally, and most importantly, assigning ground holds by means of the dynamic
FCFS heuristic is highly inefficient compared with optimal ground holds based on the
formulations of Chapter 4. This result is particularly important because the dynamic
FCFS heuristic may approximate, to some extent, current ground-holding practice

(cf. Subsection 1.3.1).
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Chapter 6

Conclusions.

6.1 Review of main points.

The fundamental contribution of this thesis is an efficient method for modeling var-
ious versions of the multi-airport GHP. The thesis is organized naturally into two
parts: presentation of the method and demonstration of its efficiency. These two
parts correspond, respectively, to the formulations (Chapters 2 and 4) and to the
computational results (Chapters 3 and 5). The computational results serve not only
to demonstrate the efficiency of the method, but also to provide insight on the be-
haviour of the multi-airport GHP, and this is a second important contribution of the

thesis.

As far as the formulations are concerned, it should be clear by now that their sum
constitutes a method rather than a mere bag of tricks. By this we mean that they are
sufficiently flexible to accommodate various degrees of modeling detail, rather than

being rigidly limited to some particular cases.

In order to appreciate the flexibility of the method, recall that, starting with the
simplest formulations (I;) and (I;) for the static deterministic case, the following

extensions were presented:

(1) Flights may be cancelled. When a continued flight is cancelled, the next flight

scheduled to be performed by the same aircraft can be either also cancelled or not
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affected at all (because, e.g., it is performed by a spare aircraft).

(2) Continued flights may have more than one “next” flights, e.g., because passen-

gers in the continued flight connect to several other flights (especially in hub airports).

(3) Aircraft in the air may be speeded up, even to the point of arriving at their

destination before their scheduled landing time.

(4) Departure and arrival capacities may be interdependent; their mix may be

modified from time to time by controlling runway use.

(5) In order to avoid discrimination, one may adopt constraints ensuring that the
optimal ground-holding policy will delay a similar percentage of continued and of
noncontinued flights. Similarly, one might adopt additional constraints in order to
avoid discrimination against short-duration flights or other forms of discrimination

among airlines or other classes of users.

(6) One may update dynamically ground (and airborne) holds whenever better

weather (and hence capacity) forecasts become available.
(7) One may introduce probabilistic capacity forecasts.

Two points are worth making here. First, the above list is an open one. New
generalizations may be devised according to the demands of the real-world situation.
Second, and most important, these generalizations are not mutually exclusive: they
can be combined to yield even more general formulations. It is easy, for instance,
to write a dynamic probabilistic formulation with flight cancellations, interdependent
~departure and arrival capacities, continued flights having more than one next flights,
the possibility of speeding aircraft in the air, and so on. This is the power of the
method.

As far as the computational results are concerned, these perform three functions:
showing that the formulations can be solved for large-scale problems in reasonable
computation times, comparing optimal solutions with alternative ways of assigning

ground holds for a network of airports, and providing insight on the behaviour of the
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multi-airport GHP for various combinations of the input parameters.

Chapter 3 presented results for networks with as many as 6 airports and 3000
flights. But this is not in any sense an upper limit; we simply chose not to perform
computations with larger networks. Moreover, the computations were not performed
by means of some custom-tailored algorithm, but by solving the linear programs ex-
actly (and then using the heuristic of Subsection 3.4.2). These facts show that, by
using special algorithms and supercomputers, one may well be able to assign ground
holds, on a real time basis, for the whole network of the major U.S. congested air-
ports. Using supercomputers is not unrealistic, given the importance of the problem,

explained in Chapter 1.

The tractability of large-scale GHPs is due to the simplicity and the compactness of
the formulations. The number of constraints and the number of variables are typically
small linear multiples of the number of flights. In sum, the method presented in this

thesis is both flexible and efficient.

Concerning now the cost savings that can be achieved by applying the formula-
tions, these depend primarily not on the formulations themselves, but rather on the
real-world data and on what the alternative ways of assigning ground holds are. Nev-
ertheless, the results presented in Chapters 3 and 5 are encouraging. For a variety of
cases, optimal ground-holding policies result in costs significantly lower than the costs
- of FCFS heuristics that may approximate, to-some extent, current ground-holding
practice. No one pretends, of course, that these simplified cases adequately model
every aspect of the true ATC environment. However, the computational results are
sufficiently encouraging to suggest that the problem deserves further research, with
a view towards applying the algorithms in a realistic simulation environment and, if

the results continue to be positive, eventually introducing them to ATC practice.

Concerning, finally, the insights obtained on the behaviour of the multi-airport

GHP, the reader is referred to the detailed summaries of Sections 3.5 and 5.3.
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6.2 Directions for future research.

The following suggestions for future research on the multi-airport GHP arise naturally

from the remarks of the previous section.

(1) The real-world GHP should be further investigated in order to find out whether
any interesting aspects have been left out in the formulations of this thesis. If such
aspects are found, it is possible that they could be incorporated in the formulations
by means of additional constraints or other modifications. As an example, one could
try to extend the formulations in order to take into account that delays sometimes
occur not only because of limited airport capacities but also because of congestion in

terminal area and en route airspace.

(2) The optimal ground-holding policies arising from the formulations should be
checked for acceptability on non-technical grounds. For instance, it was found in
Subsection 3.1.3 that optimal solutions discriminate against noncontinued flights. (It
was also shown how the formulations could be modified to avoid such discrimination.)
Other problems of this type should be checked for, and, if found to exist, they should

be eliminated by appropriate modifications of the formulations.

(3) In order to further reduce running time and to make it feasible to assign
ground holds on a real-time basis even for a very large network of airports, special-
~purpose algorithms for solving the formulations should be sought. Such algorithms
could take into account the special structure of the constraint matrix: as pointed out
in Subsection 3.1.1, if the coupling constraints did not exist, the constraint matrix

would be totally unimodular.

(4) Reduction of computation times could also be achieved by looking for heuristics
that would provide good feasible solutions of the formulations, rather than insisting

on optimal solutions.

5) Finally, the most important task for the future is to apply in practice the
p

ground holds arising from the formulations, at first on a limited scale or in a simulation
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environment, in order to obtain realistic feedback which would then spur further

research.

We conclude by expressing the earnest wish that the work presented in this thesis
will ultimately find its way into actual practice and will result in a more efficient
way of operating the air travel network. This wish is based on the philosophical
conviction that real-time dynamic control is essential to the efficient functioning of
any sufficiently complex system. Any student of Biology and Physiology cannot
help being impressed by the way in which these most complex of machines, the living
beings, operate: they are constantly in a state of dynamic equilibrium, with hundreds
of thousands of molecules being broken down and resynthesized at every second. No
matter how many new airports or runways are built, it is essential that optimal real-

time dynamic control become an integral part of the air traffic system.
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