Optimal Slot Allocation
for European Air Traffic
Flow Management

Peter B. M. Vranas

Responding to the increasing congestion of the European airspace, the
Central Flow Management Unit (CFMU) of the European Organization for
the Safety of Air Navigation (EUROCONTROL) started applying, on 28 April
1995, a centralized slot allocation process by means of a Computer Assisted
Slot Allocation (CASA) procedure. Two basic objectives of slot allocation
are to ensure the safety of crowded airspace and to minimize the total
aircraft delay by optimizing the use of the available capacity. CASA, how-
ever, is a heuristic algorithm (based on the “First Planned, First Served”
principle) rather than an optimization procedure. The present work con-
tinues and builds upon a series of recent attempts by various researchers
to examine optimization models for slot allocation. The work consists of
two somewhat disparate parts, a theoretical and a computational one. First,
a new integer programming model of the European Slot Allocation Problem
(SAP) is presented. The model is specifically adapted to the current needs
of the CFMU, but some extensions that anticipate possible future needs of
the CFMU are also presented. Second, based on a modification of a previous
model from the literature, a computational comparison of optimal slot al-
location with current slot allocation practice is effected. The computations
were performed with real data provided by EURCCONTROL and indicate
that, by applying optimal slot allocation, the total delays imposed by CASA
can be reduced in some (but not all) cases by about a third, while the
maximum delays imposed by CASA can sometimes also be reduced. The
comparisons with CASA need to be qualified in several ways; nevertheless,
given that the annual costs of delays are estimated to be of the order of
billions of U.S. dollars, the computational results suggest that applying
optimal slot allocation might result in significant savings.
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INTRODUCTION

The Congestion Problem

The annual number of flights in Western Europe' has increased from
about 2.6 million in 1982 to about 4.5 million in 1992, an increase of
about 73 percent (EUROCONTROL, 1994, Ed. 7.0, p. 7). Acute
congestion of the air traffic control system has been the result. A
similar problem exists in the United States, where each of 33 major
airports is expected to exceed 20,000 hours of annual delays by 1997
(Transportation Research Board, 1991, p. 215).

The ground and airborne delays caused by congestion create direct
costs to the airlines and indirect (opportunity) costs to the passen-
gers. Direct costs from ground delays include crew, maintenance, and
depreciation costs, while direct costs from airborne delays include, in
addition, fuel and safety costs (Vranas, 1992, p. 12). Although esti-
mates of congestion costs are not particularly reliable, there seems
to be agreement that they amount to billions of U.S. dollars.? Given
that several European and U.S. airlines are suffering yearly losses
that also amount to billions of dollars,? the significance of the conges-
tion problem can hardly be denied.

Possible solutions to the congestion problem include the following
(Odoni, 1987; Transportation Research Board, 1991; Vranas, 1992):
(1) long-term approaches, such as the construction of new airports or
of new runways at existing airports; (2) medium-term approaches,
such as congestion pricing and use of larger aircraft; and (3) short-
term approaches, especially slot allocation policies, the object of the
present work.

Reasons for Slot Allocation

A slot allocation policy assigns a time slot for departure to each of a
number of flights. If the slot falls later than the scheduled departure
time, then allocating the slot is equivalent to imposing a forced
ground delay; hence, a slot allocation policy can also be called a
ground-holding policy. “Slot allocation” is the prgferred term in Eu-

! Specifically, in the following 11 European states: Austria, Belgium, France, Germany, Ireland,
Luxembourg, Netherlands, Portugal, Spain, Switzeland, and United Kingdom.

2For example: {1) the Stanford Research Institute (a consulting company) estimated in 1990
annual costs of $5 billion in Europe due to congestion and ATC inefficiencies (Odoni, 1995; cf.
Maugis, 1995); (2) the Federal Aviation Administration estimated in 1988 the annual cost of
delays in the U.S. at $1.4 billion (Federal Aviation Administration, 1988}; (3) the Air Transport
Association of America (an association representing the interests of almost all major U.S.
airlines) estimated in 1992 that its members had direct delay costs of $1.5 billion (Odoni,
1995).

3In 1995 the U.S. airline industry had a profit of about $2.5 billion, but during the previous 5
years it had accumulated losses of about $13 billion (Gray, 1996). Some airlines in European
countries are in a similar plight, but their governments are paying for their losses.
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rope, while “ground-holding” is the preferred term in the United
States.

A first major objective of slot allocation policies is to avoid over-
loads. An overload occurs when the number of aircraft that are pres-
ent at an airspace sector exceeds the capacity of the sector. Sector
capacities are determined by the maximum numbers of aircraft that
air traffic controllers can safely handle during a given time period.
Given that overloads sometimes occur, air traffic controllers typically
give conservative values for sector capacities; i.e., the number of air-
craft that they say they can handle is typically smaller than the
number of aircraft that they in fact can handle. If, however, a slot
allocation policy is consistently implemented so that overloads almost
never occur, it is expected that air traffic controllers will start giving
the real values of sector capacities (Dalichampt, 1994). Thus, al-
though the elimination of overloads is meant to guarantee safety, it
may also reduce congestion costs by leading indirectly to an increase
of capacities and hence to a reduction of delays.

A second major objective of slot allocation policies is to reduce delay
costs by absorbing airborne delays on the ground. The basic idea is
as follows. Suppose that, if an aircraft were to depart on time, it
would encounter congestion upon its arrival at its destination airport
and thus would have to wait in the air for, say, 30 minutes. Suppose
also that, if the aircraft arrived at its destination airport 30 minutes
later, it would encounter no congestion and would land immediately.
Given that airborne delays are much costlier than ground delays
(essentially because of fuel costs), the delay cost (although not the
delay itself) can be reduced in the above scenario by holding the
aircraft on the ground for 30 minutes.

The above scenario depends on the possibility of an airport being
congested during a time period ¢,, but not during a later time period
t,. There are two ways in which this can happen. A first way is if poor
weather reigns during ¢,, but normal weather returns during ¢,. This
problem is particularly acute in the United States, where instrument
meteorological conditions (i.e., poor weather) require the use of in-
strument flight rules; these require greater spacing of aircraft than
do visual flight rules (which apply in normal weather), so that they
can reduce airport capacity by as much as 50 percent (Transportation
Research Board, 1991, p. 221). In Europe, however, visual flight rules
are seldom used (Gainche, 1996) (at least in theory), so that this

- problem does not appear. However, a second way in which an airport

can be congested during ¢, but not during ¢, is possible even with
constant capacities and is relevant for Europe: it is simply if ¢, is a
“peak” traffic period, but ¢, is not.

On the basis of the above illustrative scenario, it may be thought
that slot allocation policies cannot reduce the total delay, but can
simply transfer airborne delays to the ground. This is not true, as
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shown by the following simple example. Suppose two flights, f, and
f,, are scheduled to depart from a given airport during time period ¢,
while the departure capacity is just one flight during ¢ and very high
afterwards. Therefore, either f, or f, will have to be held on the ground
for exactly one time period. Suppose also that (1) whether f, is delayed
or not, it will encounter no congestion at its destination airport and
so will land immediately; and (2) if f, departs on time, it will incur
an airborne delay of one time period, while if f, arrives with a delay
of one time period, it will land immediately. Then by holding £, rather
than f; on the ground, the total delay is reduced from two time periods
to one, i.e., by 50 percent (and the total delay cost is reduced by an
even greater percentage, given that airborne delays are costlier than
ground delays). ’

Current Slot Allocation Practices

The importance of slot allocation policies has been recognized, and
steps towards implementing such policies have been taken both in
the United States and in Europe. In the United States, the Federal
Aviation Administration (FAA) operates the Air Traffic Control Sys-
tem Command Center (ATCSCC) in Washington, D.C. While impres-
sive progress in data collection has been made (Odoni, 1994, pp. 47—
48), the ATCSCC is still “plagued with inadequate data” (Booth,
1994, p. 111), particularly because airlines often change their sched-
ules dramatically in bad weather (just when ground-holding is most
needed) without informing the ATCSCC. Moreover, although some
steps towards applying optimization models have been made, the
ATCSCC still assigns ground holds according to heuristic procedures,
and assignments affecting each destination are made independently
of those affecting other destination airports (Booth, 1994, p. 110).

In Europe EUROCONTROL operates the Central Flow Manage-
ment Unit (CFMU) in Brussels (Bardin et al., 1992; EUROCON-
TROL, 1994, Ed. 7.0; EUROCONTROL, 1994, Ed. 1.0; EUROCON-
TROL, 1993, Ver. 1.0; EUROCONTROL, 1993, Ver. 1.8; Odoni, 1994;
Philipp et al., 1994). The CFMU provides air traffic flow management
services at three levels: (1) strategic activities are executed from sev-
eral months until 2 days before the day of operation of a flight; (2)
pretactical activities take place during the 2 days before the day of
operation of a flight; and (3) tactical activities are carried out on the
day of operation of a flight and consist mainly of slot allocation by
means of a computerized procedure based on the Computer Assisted
Slot Allocation (CASA) algorithm.

The CFMU tactical slot allocation process became operational on
28 April 1995 (Tibichte, 1995). Initially it covered only the French
airspace, but it was gradually extended and now covers the whole
European airspace (Gainche, 1996). The process works as follows
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(EUROCONTROL, 1994, Ed. 1.0). (1) An aircraft operator must file
a flight plan at least 3 hours before the intended departure time of
the flight. (2) The CFMU sends a Slot Allocation Message to the
aircraft operator at least 2 hours before the originally intended de-
parture time of the flight. (3) If the aircraft operator is not happy
with the allocated slot, or, e.g., if the CFMU later becomes able to
allocate an earlier slot, a new exchange of messages follows (EURO-
CONTROL, 1994, Ed. 2.0) and may result in the allocation of a new
slot to the flight. The tactical activity of the CFMU ends when the
flight becomes airborne.

The CASA algorithm (Bardin et al., 1992, pp. 8-11; see also
Hughes et al., 1995, pp. 73-84) carries out allocations according to
the “First Planned, First Served” rule; i.e., it gives priority not to
flights for which flight plans are filed earlier, but rather to flights
that, given their intended departure times, have earlier estimated
entry times to regulated sectors. (A sector is “regulated” during a
time period if its capacity is exceeded by the anticipated demand
during that period. A flight is “regulated” if there is at least one sector
that is regulated during a time period which includes the estimated
entry time of the flight into the sector.?) In order to avoid excessive
penalization of flights for which flight plans are filed shortly before
the intended departure time, CASA reserves some of the available
capacity for such “late filers.” Moreover, CASA reserves a portion of
the available capacity for shorthaul flights in order to avoid discrim-
ination against them. (Such discrimination could arise because long-
haul flights, which depart earlier and so are assigned slots earlier,
could use up all available capacity by the time flight plans for short-
haul flights are filed.) Finally, CASA automatically reruns every few
minutes, in the hope of improving some slot allocations in the light
of new data.

The above summary overview of current slot allocation practices
shows that, although considerable progress towards implementing
such practices has been accomplished, no optimization algorithms
are currently in use, so that current slot allocation cannot be de-
scribed as “optimal.” Given the severity of the congestion problem
and the significant potential of slot allocation for alleviating this
problem (Vranas, 1992), the interest of examining models for optimal
slot allocation becomes apparent.

Previous Research on Optimal Slot Allocation

In order to categorize previous research efforts on optimal slot allo-
cation, it is useful to distinguish various versions of the Slot Alloca-

“Complications arise for so-called “combined” flights, i.e., flights that go through several reg-
ulated sectors. These complications are important, because typically more than 30 percent of
regulated flights are combined, and a combined flight typically goes through more than two
regulated sectors (Gainche, 1996).
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tion Problem (SAP). Static versions allocate slots once and for all at
the beginning of the time horizon, while dynamic versions update
slot allocation in the light of new data that become available as time
proceeds. Deterministic versions consider airport (departure and ar-
rival) and sector capacities as fixed numbers, while probabilistic ver-
sions consider capacities as random variables. Finally, decomposed
versions allocate slots for each capacitated element (airport or sector)
independently, while network versions allocate slots for all capaci-
tated elements simultaneously in order to ensure that the allocations
for the various elements are compatible with each other.

A first detailed description of the SAP was given by Odoni (1987).
Not surprisingly, research on the SAP first focused on the simpler,
though less realistic, decomposed versions of the problem. Terrab
(1990) and Terrab et al. (1993) examined the static SAP for a single
airport. Andreatta et al. (1987) examined the probabilistic single-
airport SAP for a single time period. Richetta (1991) and Richetta et
al. (1993, 1995) examined both static and dynamic versions of the
probabilistic single-airport SAP. Andreatta et al. (1993) reviewed
optimization models for the single-airport SAP.

Some years ago, researchers began attacking network versions of
the SAP. Work focused first on versions with several capacitated
airports, but no capacitated sector. Vranas (1992) and Vranas et al.
(1994a) gave the first models of the static multi-airport SAP. An
improvement of those models was suggested by Andreatta et al.
(1995), whereas Andreatta et al. (1994) and Brunetta et al. (1995)
developed quick and efficient heuristics. Terrab et al. (1995) ad-
dressed the probabilistic multi-airport SAP. Finally, Vranas (1992)
and Vranas et al. (1994b) gave models for both deterministic and
probabilistic versions of the dynamic multi-airport SAP.

The most recent step was the formulation of models for network
versions of the SAP which include capacitated sectors in addition to
capacitated airports. These models are of special interest for the Eu-
ropean case. Lindsay et al. (1993) and Bertsimas et al. (1995) pro-
posed integer programming models, while Helme (1992) presented a
multicommodity minimum cost flow model. It seems that the models
of Bertsimas et al. (1995) have the best performance in terms of
computing time. This is due to the fact that their formulations are
“strong,” in the sense of including facets of the convex hull of the set
of solutions, so that solving the linear programming relaxations of
their models usually gives integer solutions. Bertsimas et al. (1995)
also proved that the SAP is NP-hard and proposed an integer pro-
gramming model for rerouting flights.®

5 For more detailed surveys of previous research on optimal slot allocation, see Helme et al.
(1992), Lindsay et al. {1993, pp. 256—259), and Tosic and Babic (1995). Kiittner (1995) has an

extensive bibliography.
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Contribution of the Present Work

The present work makes two (only loosely related) contributions.
First, a new integer programming model for the static deterministic
network SAP is presented. The model is specifically adapted to the
current needs of the CFMU and is intended as an alternative to
CASA, which is a heuristic rather than an optimization procedure.
Given the needs of the CFMU, the emphasis is on capacitated sectors,
although an extension of the model incorporating capacitated air-
ports is also presented. Second, and most important, computational
results are reported, based not on the new model, but rather on a
version of the Bertsimas et al. (1995) model adapted to the needs of
the CFMU. The computations were performed with real data pro-
vided by EUROCONTROL. Comparisons with the results of CASA
indicate that optimal slot allocation can reduce in some (but not all)
cases the total delays imposed by CASA by about a third and can
sometimes also reduce the maximum delays imposed by CASA. An
interesting result is that optimal slot allocation typically delays many
fewer flights than CASA does, but the mean delay per delayed flight
is higher for optimal slot allocation than for CASA. Although the
comparisons with CASA need to be qualified in certain ways (see
Conclusions), these results can be considered important because they
go beyond purely hypothetical assertions of the utility of optimal slot
allocation models, and they constitute what seems to be the first
concrete evidence to the effect that use of such models might result
in a significant reduction of delay costs.

The remainder of the paper consists of two major parts: the next
section presents the new integer programming model, whereas the
third section reports the computational results based on a version of
the Bertsimas et al. (1995) model. The final section evaluates the
results and presents suggestions for future research.

AN INTEGER PROGRAMMING MODEL OF THE
EUROPEAN SLOT ALLOCATION PROBLEM

This section presents a novel integer programming model of the Eu-
ropean SAP. The model is specifically adapted to the current needs
of the CFMU, although some extensions that anticipate possible fu-
ture needs of the CFMU are also presented.

Notation
Consider a set of airports X = {1,..., K}, a set of airspace sectors
S ={1,..., 8}, and an ordered set of time periods 7 = {1,..., T}.

For instance, X might be a set of 50 European airports, 5 might be a
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set of 25 sectors of the European airspace regulated by the CFMU
during some part of the time horizon, and 7 might be a set of 96 time
periods of 15 minutes each, amounting to a time horizon of 24 hours.
Consider also a set of flights ¥ = {1, ..., F}. (These are understood
as flight legs, so that a single aircraft may perform several of them
in succession.) 7 is the set of all flights of interest, e.g., all flights
passing through at least one congested sector. For a typical day, ¥
may include several thousands of flights.®

For each time period ¢ € 7, we are given the departure capacity
D,, and the arrival capacity R,, of each airport k € X, as well as the
capacity P, of each sector s € 5. There is a conceptual difference
between airport and sector capacities: D,, and R,, are the maximum
numbers of aircraft that may flow out of or into airport £ during time
period ¢, while P,, is the maximum number of aircraft that may be
present at sector s during time period ¢.

For each flight f € 7, the following data are also given: &} € X, the
airport from which f is scheduled to depart; k; € X, the airport to
which f is scheduled to arrive; S, C 5, the ordered set of sectors that f
is scheduled to go through (the sectors are ordered in the sequence
in which f is scheduled to go through them); tf € 7, the scheduled
departure (take-off) time of f; ¢; € 7, the scheduled arrival (landing)
time of f; * € 7, the scheduled entry time of f into each sector s €
Sy, ti~ € T, the scheduled exit time of f out of each sector s € S;; and
¢4, the cost incurred for each time period that f is delayed on the
ground.

Table 1 summarizes the above notation for reference purposes.

Table 1 also includes some symbols that will be defined in what
follows.

Decision Variables and Sector Capacity Constraints

There is only one decision that needs to be taken about each flight f,
namely how many time periods g, it will be held on the ground.
Equivalently, the decision can be described as “allocating a departure
slot to each flight.” Theoretically, one could also take decisions con-
cerning the speed of each flight en route, regulating the time at which
a flight will arrive at each sector in its path. This possibility could be
accommodated by defining decision variables corresponding to im-
posed delays (or speed-ups) for each sector in the path of each flight.
Such an approach will not be followed here, because it is the policy
of the CFMU to avoid imposing airborne delays. The reasoning be-
hind this policy is that imposed airborne delays (or speed-ups) would

5 Currently more than 20,000 flights cross the European airspace daily (Tibichte, 1995}, but
usually not more than half of these flights go through regulated sectors.

"Sector capacities may also be understood as maximum flows into sectors, and this is in fact
how they are understood in CASA. This fact has important implications; see footnote 11.
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Table 1. Basic Notation and Acronyms

Symbol Denotation

Sets

Xx={,...,K} Set of airports k.

s=1{1,...,8} Set of sectors s.

F=1{,...,F} Set of flights f.

T={1,..., T} Ordered set of time periods ¢.

Times

HeT Scheduled departure time of flight f.

LE T Scheduled arrival time of flight /.

tre T Scheduled entry time of flight f into sector s.
e T Scheduled exit time of flight f out of sector s.

Decision variables

P Delay decision variables for ground holds.

U, Point assignment decision variables for departures.
Wy, Interval assignment decision variables for departures.
d,, Capacity decision variables for departures.

i Capacity decision variables for arrivals.

Dl Capacity decision variables for sectors.

Capacities

D, Departure capacity of airport £ at period ¢.

R, Arrival capacity of airport & at period ¢.

P, Capacity of sector s at period ¢.

Other symbols

A, Number of flights scheduled to depart from % at ¢.

| Number of flights scheduled to arrive at % at ¢.

i, Number of flights scheduled to enter s at ¢ and to exit at ¢".
5, CS Ordered set of sectors that f is scheduled to go through.
kex Departure airport of flight f.

kex Arrival airport of flight f.

it Ground delay cost of flight f per time period.

G Upper bound on the ground delay of a flight.

L, Length of sector s.

FCF Set of continued flights 7.

s, Slack of continued flight /.

be inapplicable in practice, given the short flying times of most flights
in the European airspace (Gainche, 1996). This reasoning does not
hold for the U.S. airspace, for which a model complete with airborne
delays might be appropriate. Such a model has been developed by
Bertsimas et al. (1995).

It seems thus that the delay decision variables g, are all one needs.
Unfortunately, it is not possible to express the departure, arrival,
and sector capacity constraints as linear functions of these decision
variables. A previous approach to this problem (Vranas, 1992; Vranas
et al., 1994; Vranas et al., 1994a, 1994b; see also Bertsimas et al.,
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1995) has been to define (point) assignment decision variables: u, was
defined to be 1 if flight f is allocated a departure slot at time period ¢
(i.e., if 7 + g, = t), and 0 otherwise. Introducing these assignment
decision variables allows one to express the departure and arrival
capacity constraints in a simple way, but has the unfortunate effect
of greatly increasing the size of the model. In fact, denoting by G the
maximum number of time periods that a flight may be delayed on
the ground (e.g., G = 10 corrresponds to a typical maximum ground
hold of 2.5 hours), the number of u, decision variables is about (G +
1F.2 If the number of flights is, e.g.,, F = 10,000, then there are
110,000 decision variables, a very large number for an integer pro-
gramming model.

In order to keep the number of decision variables as small as pos-
sible so that the model may be solvable within a reasonably short
amount of time, use of assignment decision variables will be avoided.
Define instead (sector) capacity decision variables as follows: pi, is
the number of aircraft that are scheduled to enter sector s at time
period ¢ and to exit sector s at time period ¢, but are held on the
ground for i time periods (i € {0, . . ., G}). These variables allow one
to express the sector capacity constraints in the following way:

G
2 p;,t—n—i,t+1+x—i = Psti (S,t) E 5 X ‘T’ (1)

where L, is the length of sector s, i.e., the maximum number of time
periods that an aircraft needs to go through s.

The reasoning behind (1) is as follows. The left-hand side of the
inequality in (1) must be the number of aircraft that are present at
sector s during time period ¢. The aircraft present at s at ¢ are the
aircraft that have entered s at a time ¢* < ¢ and that will exit s at a
time ¢* = ¢ + 1.° The possible entry times ¢* of these aircraft at s
range from ¢ — L, to ¢ and, for each given ¢*, the possible exit times
t- from s range from ¢t + 1 to¢t* + 1 + L,. Therefore, the sector
capacity constraints become:

31t may not be exactly (G + 1) F because the scheduled departure time of some flights may be
50 close to the end of the time horizon that fewer than G + 1 departure slots will be available
for each of those flights. This insignificant complication will be ignored in what follows.

® Aircraft are assumed to enter or exit sectors only at time instants coinciding with the begin-
ning of time periods. The real entry and exit times of flights to and from sectors are rounded
off so that, if an aircraft ic present at a sector during part of a time period, then it is present
at the sector during the whole time period. Therefore, pi,, = 0;if pi,. > 0, thent’ = ¢ + 1.
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t t* +1+Ls

E 2 pst+t‘ = sty (s,t) 65 X T) (2)

tt=¢t—-Ly t-=t+1

where p,.,- is the number of aircraft that have entered s at ¢* and
will exit at ¢~. p2.,- of these aircraft were scheduled to enter s at ¢*
and to exit at ¢~ and took off on time; p;,. _,,- _, of these aircraft were
scheduled to enters at ¢+ — 1 and to exit at £~ — 1 and took off after
a ground hold of one time period; and so on up to p&,. _g,- _g. There-
fore, py+- = & opL,+ _ip- i Substitution into (2) and change of var-
iables gives (1).

The Basic Integer Programming Model
We are now in a position to give the basic integer programming model
of the European SAP, a model specifically adapted to the current
needs of the CFMU.
(P,) min =f_, c3g,
s.t. 2711,;0 Efl’:_()n E?=0 pi,t—n—i,t+1+x——i = Psts (S, t) € S X (I; (3)
S o P =y, (B,DESX Tt +1st'=t+1+L; 4

=G, fEF (5)
Delay — capacity constraints; (6)
&, Pl nonnegative integers. (7)

The objective function, to be minimized, is the total cost of delays
in the airport network. Although in theory one could assign different
delay costs per time period, c%, to different flights f (e.g., larger air-
craft could have higher delay costs), in practice this would violate the
principle of equity among all users of the airport network, a principle
of high importance for the CFMU (EUROCONTROL, 1994, Ed. 1.0,
p. 111-03; see also Bardin et al., 1992, p. 16). Therefore, all ¢f are
taken to be equal; this amounts to minimizing the sum of all delays
rather than the total cost of delays.

Constraints (3) are the sector capacity constraints explained in
detail earlier. Constraints (4) express the fact that, among the air-
craft that are scheduled to enter sector s at ¢ and to exit at ¢’ (the
number of these aircraft being denoted by I1,,.), p2, aircraft will not
be delayed at all, pl,,. will be delayed one time period, and so on up
to pS,. It follows that, for each combination <s,t,t'> for which
I, # 0, one of the decision variables p2,, pl., . . ., pS. can be elim-
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inated by means of the equality constraints (4).'° Therefore, there are
G decision variables left for each such combination <s,¢,¢'>. Denoting
by 5, C S the set of sectors that are regulated at time £, the total
number of p',,. decision variables can be seen to be G Z,.; Z.c.(L, +
1XL, + 2)/2. For the typical values of about 350 sector-hours (1,400
sector-periods) regulated each day by the CFMU, G = 10,and L, =
0,'! the number of p:,. decision variables becomes 14,000. Adding to
these the F decision variables g, (e.g., ¥ = 10,000), the total number
of decision variables in model (P,) becomes 24,000. What seems to be
the best previously available model of the SAP (Bertsimas et al.,
1995), suitably adapted to meet the current needs of the CFMU (see
model (P,) below), has GF = 100,000 decision variables. Therefore,
model (P,) achieves a reduction of more than 75 percent in the num-
ber of decision variables for the above typical values of the parame-
ters. -

Constraints (5) simply express the fact that the maximum allow-
able ground hold is G time periods. Constraints (6) indicate that
model (P,) is, as it stands, incomplete, because there is no guarantee
that, in the optimal solution, the values of the delay decision vari--
ables g, and those of the capacity decision variables p.,. will be com-
patible (as they should be, given that, in the real-world problem,
determining g, suffices to determine p.,,.). Spelling out constraints (6)
is relegated to the appendix, because it requires a rather lengthy
treatment that would complicate the exposition here.

Extensions of the Basic Model

This subsection presents two extensions of the basic model (P,). These
extensions anticipate possible future needs of the CFMU. The first
extension is straightforward and shows how to incorporate into (P,)
constraints for departure and arrival capacities at airports. The sec-
ond extension comes from previous work (Vranas, 1992; Vranas et
al., 1994; Vranas et al., 1994a, 1994b) and shows how to take into
account the propagation of delays that results from connections be-
tween flights.

Departure and Arrival Capacity Constraints. Define departure
capacity decision variables as follows: d;, is the number of flights that

07f, for instance, variables p%, are eliminated, then the equality constraints (4) must be
replaced by the following inequality constraints:

G
2 P = Iy (8)

=1
U The value L, = O corresponds to the current understanding by CASA of sector capacities as
maximum flows into sectors (see footnote 7). Given this understanding of sector capacities,
the sector capacity constraints could have been expressed like the departure and arrival
capacity constraints (9} and (10) (see the subsection on Departure and Arrival Capacity

-———Constraints);-but the more general way (1) of expressing them was preferred. ’
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—- slack: sp turnaround time

—— excess delay: gp — sp0 —
t}: + gfr
Figure 1. Modeling of connections between flights.

are scheduled to depart from airport k2 at time period ¢, but depart
with a delay (ground hold) of i time periods (i€ {0, . . . , G}). Similarly,
define r, (arrival capacity decision variables) as the number of flights
that are scheduled to arrive at airport k at time period ¢, but arrive
with a delay (due to their ground hold) of i time periods. The depar-
ture and the arrival capac1ty constraints are then expressed in the
following way:

G
> di =Dy, k,1)EKXT )
i=0
G
> r, =Ry B,HEKXT. (10)
i=0

Connections Between Flights. Some aircraft perform successive
flights. Denote by 7 the subset of ¥ that contains the “continued”
flights. A flight is said to be continued if the aircraft which is sched-
uled to perform it is also scheduled to perform at least one more flight
later on in the day. For each flight f' € ', we are given the next flight
f scheduled to be performed by the same aircraft.

For each continued flight /', we are also given its “slack” s.. The
slack is defined as the number of time periods such that, if f' lands
at most s, time periods late, the departure of the next flight f is not
affected, whereas if f' lands with a delay greater than the slack, the
“excess delay” of /' (i.e., the delay minus the slack) is transferred to
the next flight f. In the iatter case, the next flight f will incur a ground
delay at least equal to the excess delay of f*. The situation is depicted
in Figure 1, where it can be seen that the slack s, is equal to the
difference between (1) the time interval between the scheduled de-
parture time of f and the scheduled arrival time of f*, and (2) the
minimum “turnaround” time of the aircraft performing both flights.

Given the above setup, connections between flights are taken into
account by the following constraints:
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g —s <g, [ EF. (11)

It should be noted that f’ and f need not be physically performed
by the same aircraft. Constraints (11) also hold for any pair of flights
(f', ) such that fis not allowed to leave before f' lands, because some
passengers from f' must transfer to f.

Although previous work (Vranas, 1992; Vranas et al., 1994a) has
demonstrated that the propagation of delays has important effects,
constraints (11) were not included in the basic model (P,). The reason
is that the CFMU has no data showing which successive flights are
performed by the same aircraft or which flights are connected. It is
hoped, however, that such data will become available in the future.

The Extended Integer Programming Model. Combining model
(P,) presented earlier with the departure (9) and arrival (10) capacity
constraints, as well as with the constraints for connections (11), we
get the following extended model:

(P,) min 2;11 ci8r

st Zpio By EloPisn-iwr1ea-i = Poy (S ES X T, (12)
3 o0dis-i =Dy, RHEXXT, (13)

2 oThe—i =Ry RHDEXXT, (14)
2P =1, GHESXT,t+1=<t=t+1+L,; (15)

2 ody = Ay RHDEX X T, (16)

2 orh =T RUDEXXT, 1n

& — s =8 [EF,; (18)
g&=G, fex (19)
Delay — capacity constraints; (20)

&, Pir NONNegative integers. (21)

A,, denotes the number of aircraft that are scheduled to depart
from airport &k at time period t; similarly for I',, and arrivals. Con-
straints (16) and (17) are straightforward analogs of constraints (15).
The total number of decision variables can be seen to be F (delay
variables) + 2GKT (departure and arrival capacity variables) + G
Zier Zees, (Ly + 1) (L, + 2)/2 (sector capacity variables).

Constraints (20) indicate again that model (P,) is, as it stands,
- incomplete. Spelling out constraints that relate the delay and the
capacity decision variables is the object of the appendix.

%
|
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COMPUTATIONAL COMPARISON OF
OPTIMAL SLOT ALLOCATION WITH CURRENT SLOT
ALLOCATION PRACTICE

The purpose of this section is to compare optimal slot allocation with
slot allocation as currently practised by the CFMU. There are several
measures on which such a comparison might be based, but the most
important one is arguably the sum of the delays imposed on all
flights. The minimization of this total imposed delay is the objective
of optimal slot allocation models. A secondary measure of comparison
is the maximum imposed delay. Reducing this maximum delay is one
way of approaching the goal of equitable treatment of all flights.
Other measures of comparison, such as the percentage of flights that
are delayed and the mean delay per delayed flight, will also be
considered.

The computations were performed not with model (P,), but with
the following model (P,), which is an adaptation to the current needs
of the CFMU of a model developed by Bertsimas and Stock (1995)—
itself a development of models presented by Vranas (1992) and
Vranas et al., (1994a, 1994b).

. F ¢+ G
(Py) min X, cftiwpg — 1) + 2o twp — wy, )

st Dpees, Wi -y = Wre-ag ) = Pus (SDES X T, (22)

Wy = W, [fEFR=t=ti+ G- 1 (23)
Weevg = 1, fETF; (24)
w, € {0,1}. (25)

The (interval) assignment decision variables wp are defined as fol-
lows: wy, is 1 if flight f takes off by time period ¢ (i.e., during ¢ or an
earlier period) and 0 otherwise (i.e., if f takes off after ). Therefore,
if ftakes off at t, wy. = 1fort’ = ¢, andwy = Ofort” <t — 1. It can
be shown that what multiplies c# in the objective function is in fact
g Constraints (22) are the sector capacity constraints, and con-
straints (24) ensure that f departs by ¢t + G, i.e., that g, = G. For
further details see Bertsimas et al. (1995). (Constraints (23) are
briefly explained in footnote 13.) _

Computational experiments carried out by Bertsimas et al. (1995)
and by Andreatta et al. (1996) indicate that the Bertsimas-Stock
model is quite efficient. A reason for preferring model (P;) to model
(P,) for the computations was that, as Bertsimas and Stock have
found and explained (Bertsimas et al., 1995), the linear programming
(LP) relaxation of their model normally has completely integral so-
lutions. By solving the LP relaxation rather than the integer pro-
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gram, one achieves of course substantial savings in computation
time. It will be seen later, however, that the solutions of the LP
relaxation of model (P;) turned out not to be completely integral. It
should also be noted that the computations were performed with
datasets corresponding to the initial period of operation of the CFMU,
when only flights crossing the French airspace were regulated. Solv-
ing model (P;) might be computationally advantageous now that the
CFMU operations have expanded to cover the whole European air-
space: as explained earlier, for F = 10,000, model (P,) has about 75
percent fewer decision variables than model (P,).

The Scenarios

The computations were based on data kindly provided by EURO-
CONTROL.'? The datasets correspond to the approximately 5,800
flights that cross the French airspace daily. When the demand for a
certain sector is expected to exceed the sector capacity for a portion
of the day, a corresponding “regulation” is activated (corresponding
to a sector capacity constraint in models (P;) — (P;)), and all flights
scheduled to cross the given sector during the given portion of the
day are subject to this regulation. Clearly, a flight may be subject to
multiple regulations. Moreover, only a portion of the approximately
5,800 flights (usually about 1,500-2,000) will be regulated on any
given day. Now that the tactical operations of the CFMU have ex-
panded to cover the whole European airspace, the total number of
flights that are regulated on any given day typically exceeds 6,000.

As shown in Table 2, five scenarios were considered, involving from
16 to 44 regulations and from 1,154 to 2,293 flights. Very roughly,
scenarios S1, S2, and S3 were related as follows (Tibichte, 1995). S1
included all flights that were scheduled to cross a sector at a time
when the demand for that sector exceeded its capacity. After CASA
turned out the imposed delays for each of these flights, scenario S2
was derived from S1 by means of horizontal and vertical reroutings
designed to ensure the feasibility of the CASA solution. After CASA
turned out the imposed delays for S2, scenario S3 was derived from
S2 by eliminating some redundant regulations. Given this indirect
“operational optimization” process, it can be expected that, as one
proceeds from S1 to S3, the CASA solution will somehow improve.
This prediction was indeed confirmed, as discussed later.

Scenario S4 corresponds to a case where a breakdown occurs in
the CASA system. To face this situation, sector capacities are reduced
initially by 75 percent and then gradually restored to their original
values after the breakdown is repaired. Finally, scenario S5 is a case

2The invaluable assistance of M. A. Tibichte of the EUROCONTROL Expenmental Centre in
Brétigny, France, is most gratefully acknowledged.
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where more than 50 percent of the flights are subject to multiple
regulations.

Computation Times

The fundamental advantage of CASA over an optimization model is
that CASA, being a heuristic that requires no iterations, runs in very
short computation times. For example, CASA ran in 35 seconds for
scenario 83 and in 25 seconds for scenario S4. An optimization model
requires thousands of iterations (lines 11, 12, and 18 of Table 2) and
is thus bound to be much slower than CASA. The important question
however is: how much slower? Slot allocations need to be updated
dynamically at short intervals because new data keep coming in dur-
ing the course of the day. (The CFMU calls this dynamic updating
the “True Revision Process” and uses a series of message exchanges
for it [EUROCONTROL 1994, Ed. 2.0].) Currently CASA reruns au-
tomatically every, e.g., 3 minutes, as well as whenever some modifi-
cation for a flight is received. The CFMU has indicated a willingness
to consider the possibility of a slot allocation process that might rerun
as infrequently as, say, every 10 or at most 15 minutes (Gainche,
1996). Can this bound be achieved by optimization models?

It will be seen that it can, subject to some qualifications. The LP
relaxations for most scenarios were solved twice: once on a Sun Spare
2 workstation (40 MHz, 64 MB RAM, 4.2 MFlop) using CPLEX 3.0
as the solver, and once on a Sun Sparc 5 workstation (110 MHz, 192
MB RAM, 14.9 MFlop) using CPLEX 4.0 as the solver. (The modeling
tool was GAMS 2.25.) A comparison of lines 9 and 10 of Table 2 shows
that the computation times were reduced by about 60 percent to 80
percent. Line 17 of Table 2 gives the CPU times required to find a
first integer solution on the Sun Spare 5 with CPLEX 4.0. These times
range from 5.6 to 200.1 minutes. The upper end of this range clearly
exceeds the 15-minute bound, but it must be taken into account that,
until the recent release of the Sun Ultra computer, the Sun com-
puters were the slowest workstations on the market (Lowe, 1996).
CPLEX Optimization, Inc., has most kindly agreed to solve, for com-
parison purposes, scenario S3 with an upper bound on delays of 150
minutes (Lowe, 1996). They used an SGI Power Challenge (4 CPU,
75 MHz) and found a first integer solution in 121 seconds, as opposed
to the 2,271 seconds reported in Table 2. The optimal solution (with
a total delay of 28,170 minutes) was found in a total of 339 seconds.
Thus the 15-minute bound seems to be achievable.

It might be objected that the SGI Power Challenge is in fact a
supercomputer and is thus prohibitively expensive. But the compu-
tation cost might be worthwhile, since it might result in a significant
reduction of delays (as discussed later) and thus in annual savings
of hundreds of millions of U.S. dollars in congestion costs. Moreover,

o R
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operations research departments of airline companies use similar
computers to solve routinely optimization problems of structure sim-
ilar to that of model (P,) (e.g., American Airlines uses an SGI Power
Challenge, 2 CPU, 90 MHz).

Four further remarks might be made concerning computation
times.

(1) Computation times depend not only on the hardware, but also
on the algorithm. The computations reported in Table 2 were per-
formed with the “netopt” command of CPLEX (extraction of a net-
work and then dual Simplex method), which was found to have much
better performance than either the “optimize” (primal Simplex) or
the “tranopt” (dual Simplex) command. The Barrier algorithm of
CPLEX was not available, but was used by CPLEX Optimization,
Inc., in their solution of scenario S3, and might have contributed
significantly to the reduction of the computation time. This is indi-
cated by comparisons of the performance of the Barrier algorithm
with that of the other algorithms of CPLEX, in computations per-
formed by Andreatta and Brunetta (1996).

(2) In most computations performed in previous research with the
Bertsimas-Stock model (Andreatta and Brunetta, 1996; Bertsimas,
1995), the solutions of the LP relaxation were completely integral, so
that-one did not need to engage in the time-consuming branch-and-
bound process in order to find an integer solution. Line 13 of Table 2
indicates that, although the percentage of noninteger variables in the
optimal solution of the LP relaxation was always small, it was never
zero. In fact, a comparison of lines 10 and 17 shows that branching
on these noninteger variables until an integer solution was found
increased the total computation time quite significantly. Thus the
hope that one can get away just by solving the LP relaxation is
shattered.!®

(3) Recall that CPLEX Optimization, Inc., required 121 seconds to
find a first integer solution but 339 seconds to find the IP optimum.
The IP optimum was 28,170 minutes (1,878 periods), whereas the LP
optimum was 28,155 minutes (1,877 periods), and the value of the
first integer solution reported in Table 2 was 28,185 minutes (1,879
periods). It seems thus that, once a first integer solution is found,

13 A plausible theoretical explanation can be offered for this result. In the original Bertsimas
et al. (1995) model, three kinds of connectivity constrainis are facets of the convex hull of the
set of solutions: sector connectivity constraints (an aireraft cannot enter a sector before
leaving the previous one), flight connectivity constraints (an aircraft cannot depart for a next
flight before it has arrived and stayed some time on the ground), and time connectivity
constraints (if a flight has departed by time ¢, then it has departed by time ¢ + 1). The
capacity constraints for airports and sectors are not facets. Now model (P;) is a special case
of the Bertsimas-Stock model, a case in which no airborne delays are imposed, so that the
sector and the time connectivity constraints drop out, and only the time connectivity con-
straints (23) remain; thus model (P;} may not be as strong as the original Bertsimas-Stock
model.
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continuing the computation in order to find the IP optimum results
in only a negligible improvement of the objective function that is not
worth the significant increase in computation time. There is consid-
erable evidence to indicate that this is always the case: the IP and
LP optimal values are always very close (Vranas, 1992; Vranas et al.,
1994a; cf. line 16 of Table 2).

(4) A further decrease in computation time might be achieved by
developing heuristic algorithms to find a near-optimal solution. Very
successful such heuristics have been developed for optimization
models without sector capacities by Andreatta et al. (1994) and by
Brunetta et al. (1995); it is reasonable to hope that these heuristics
can be extended to the case in which sector capacities exist. (See
Maugis, 1995, for further ways to find approximate solutions.)

Comparing CASA Solutions with Optimization Solutions

The comparisons will be based on the total delays, the maximum
delays, and the distributions of delays. Some words will also be said
about the delays of simple versus combined flights.

Comparing Total Imposed Delays. Several computations were
performed for each of the five scenarios, in order to find by trial-and-
error the lowest upper bound G on delays that resulted in a feasible
problem. The values of G are given in lines 5 (in minutes) and 6 (in
number of 15-minute periods) of Table 2. For instance, scenario S1
was solved with G =-10 and with G = 9; it was infeasible for
G = 8. Similarly, S2 was infeasible for G = 7, S3 for G = 8, S4 for
G = 22,and S5 for G = 11.

Line 15 (cf. line 8) of Table 2 shows that, for scenarios S1, S2, and
S3, the optimal total delay was about two-thirds the CASA total delay
or less. Moreover, the ratio of the optimal total delay over the CASA
total delay increased from 59 percent for S1 to about 68 percent for
S3, confirming thus the prediction that the CASA solution improves
as one proceeds from S1 to S3 by means of the indirect “operational
optimization” process roughly described earlier.

For scenario S4, the optimal total delay was almost the same as
the CASA total delay. It may be the case that for the extremely
restricted sector capacities of this “breakdown” scenario (several ca-
pacities had a value of zero or one flight per hour after the break-
down), a first-come-first-served procedure like that applied by CASA
gives near-optimal solutions.

Finally, scenario S5 gives a ratio of LP optimal over CASA total
delay of 90 percent.

Comparing Maximum Imposed Delays. By comparing lines 4
and 5 of Table 2 one can reach the following two conclusions. First,
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it is sometimes feasible to reduce the maximum delay of CASA; the
reduction is about 20 to 25 percent for scenarios S1, S2, and S3.
Second, this reduction is not always possible, as indicated by scenario
S5. Notice that, for scenario $4, G = 22 (i.e., 330 minutes) results in
an infeasible solution, whereas CASA found a feasible solution with
a maximum delay of 327 minutes. This result indicates that the two
solutions are not directly comparable, presumably because the EU-
ROCONTROL data were transformed in such a way that, if a flight
was present at a sector during some part of a 15-minute period, it
was taken to be present at the sector during the whole 15-minute
period (cf. footnote 9). This incomparability deserves further inves-
tigation.

Lines 7 and 14 of Table 2 indicate that, in the cases in which it is
possible to reduce the maximum imposed delay, one can do so without
appreciably increasing the total imposed delay. For instance, a 25
percent reduction of G from 12 to 9 periods for scenario S3 results in
an increase of less than 4 percent (from 28,005 to 28,995 minutes) in
the total delay of the first integer solution.

Comparing Distributions of Delays. Table 3 gives some data on
the distributions of delays for the CASA solutions of scenarios S1—
S4, as well as the complete integer solutions for the seven problems
for which such solutions were found (cf. Table 2). A comparison of
lines 10 and 2 (cf. line 12) of Table 3 shows that the (near-)optimal
solution reduces drastically the number of delayed flights, in some
cases by about a third and in other cases by almost two-thirds.*
Given that this reduction is more than the reduction in total delay
(line 15 of Table 2), the mean delay per delayed flight increases sig-
nificantly in the optimal solution (lines 1, 8, and 9 of Table 3).

It can be seen also from lines 13—37 of Table 3 that the optimal
solutions for scenarios S1-S3 have a concentration of delays at the
highest possible delay G. Such a concentration is not observed for
scenario S4, presumably because for S4 G has a value about twice
the value it has for S1-S3. It would be interesting to see whether the
CASA solutions exhibit similar effects, but unfortunately the com-
plete CASA solutions were not available.

Simple Versus Combined Flights. Given that combined flights
(by definition) are subject to more than one regulation, they are ex-
pected to incur a greater mean delay than simple (i.e., noncombined)
flights. Relevant data were available for the CASA solution of sce-
nario S3. Line 4 of Table 4 shows that 36 percent of delayed flights

4 This effect is so large that it survives a possible distortion due to time discretization: some
of the flights that CASA delays less than 15 minutes might be considered to be nondelayed
for purposes of comparison with the optimal solution.
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Table 3. Distributions of Delays

Scenario S1 S2 S3 S4
CASA results
1 Mean delay/delayed {(min) 40 34 37 56
2 # of delayed flights 1,601 1,302 , 1,133 942
3 % of delayed flights 65% 59% 64% 82%
4 # flights delayed < 15 min 318 179
5 :‘:l ii}}lghts delayed 30-60 364 393 3 407 305
6 # flights delayed > 60 min 366 181 170 263
Optimization results
7 G (# of 15-min periods) 9 10 12 10 9 124 23
8 Mean delay/dealyed (min) 61 57 71 61 65 86 85
9 (1)/(8) [CASA/Integer] 66% 60% | 52% 61% 57% |65% 66%
10 # delayed flights 583 501 394 462 447 | 597 603
11 % of delayed flights 25% 23% | 22% 26% 25% |52% 52%
12 (10)/A2) [Integer/CASA] 39% 38% | 35% 41% 39% | 63% 64%
13 # flights with delay 1 180 166 112 148 134 | 146 171
14 # flights with delay 2 ~ 85 84 67 68 64 | 101 85
15 # flights with delay 3 63 47 35 46 35 58 59
16 # flights with delay 4 37 38 25 34 28 49 43
17 # flights with delay 5 22 34 20 23 21 26 32
18 # flights with delay 6 32 25 16 24 21 25 34
19 # flights with delay 7 32 18 19 23 17 34 25
20 # flights with delay 8 30 16 10 19 39 25 20
21 # flights with delay 9 102 30 10 22 88 9 12
22 # flights with delay 10 0 43 10 55 0 15 12
23 # flights with delay 11 0 0 23 0 0 13 16
24 # flights with delay 12 0 0 47 0 0 9 5
25 # flights with delay 13 0 0 0 0 0 18 9
26 # flights with delay 14 0 0 0 0 0 9 12
27 # flights with delay 15 0 0 0 0 0 8 12
28 # flights with delay 16 0 0 0 0 0 9 4
29 # flights with delay 17 0 0 0 0 0 8 10
30 # flights with delay 18 0 0 0 .0 0 7 9
31 # flights with delay 19 0 0 0 0 0 5 8
32 # flights with delay 20 0 0 0 0 0o |5 8
33 # flights with delay 21 0 0 0 0 0 4 7
34 # flights with delay 22 0 0 0 0 0 5 4
35 # flights with delay 23 0 0 0 0 0 4 8
36 # flights with delay 24 0 0 0 0 0 5 0
37 # flights with delay > 24 0 0 0 0 0 0 0

were combined in the CASA solution, whereas 61 percent of delayed
flights were combined in the integer (near-)optimal solution (with
G = 10). Line 8 of Table 4 shows that combined flights incurred
55 percent of the total delay in the CASA solution, but 78 percent in
the optimal solution. One might think then that the optimal solution
discriminates heavily against combined fiights. But a better measure
of possible discrimination might be the ratio mean delay percombined
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Table 4. Simple Versus Combined Flights

Scenario S3 CASA Optimization
1 # of delayed flights 1,133 462
2 # of simple delayed flights 730 179
3 # of combined delayed flights 403 283
4 % of delayed flights that are combined 36% 61%
5 Total delay (min) 41,581 28,185
6 Total delay of simple flights (min) 18,789 6,255
7 Total delay of combined flights (min) 22,792 21,930
8 % of total delay incurred by combined 55% 78%
9 Mean delay per delayed flight (min) 37 61
10 Mean delay per simple delayed flight (min) 26 35
11 Mean delay per combined delayed flight (min) 57 if}
12 Ratio of line 11 over line 10 2.2 2.2

delayed flight over mean delay per simple delayed flight, and this
ratio has the same value (line 12 of Table 4) for both the CASA and
the optimal solutions. Therefore, there is a sense in which the optimal

solution does not discriminate against combined flights more than
CASA does.

Sensitivity Analysis

Upper Bounds on Delays. By comparing the two columns of
Table 3 corresponding to the integer solutions for scenario S4, it is
seen that the same total delay can be achieved with different values
of the upper bound G on delays. The mean delays (per delayed flight)
are about the same for both solutions (86 minutes for G = 24 versus
85 minutes for G = 23) and the same holds for the standard devia-
tions (84 minutes for G = 24 versus 86 minutes for G = 23). A
comparison of the three columns of Table 3 corresponding to the
integer solutions for scenario S3 leads to similar conclusions. It seems

thus that it is profitable to find, by trial and error, the lowest value
of G for which the problem remains feasible.

Time Discretization. The LP relaxation of scenario S3 was solved
on the Sun Sparc 5 by discretizing time into periods of 5 minutes and
with G = 30 periods (150 minutes). The LP optimum was found in
about 10,200 CPU seconds after 46,226 iterations, and the total delay
was 28,920 minutes. This value is only 2.7 percent higher than the
corresponding value for periods of 15 minutes. This result indicates
that the effects of time discretization may not be significant, although
further investigation is certainly called for.

Summary of Results

To summarize, the computational results reported in this section
constitute (defensible) evidence for the following conclusions.
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(1) 1t is possible to solve two optimality integer programs corre-
sponding to the portion of the European air traffic that crosses the
French airspace in less than 10 minutes by using supercomputers
and the Barrier algorithm of CPLEX. The computation time can be
significantly reduced if one settles for a first integer solution, which
in any case usually differs only negligibly from the optimal solution.
However, one cannot settle for just the optimal solution of the LP
relaxation.

(2) In some (but not all) cases, the optimal solution can reduce
significantly the total delay imposed by CASA. In some (but not all)
cases, this reduction in the total delay can be achieved concurrently
with a reduction of the maximum delay imposed by CASA.

(3) The optimal solution delays many fewer flights than CASA
does, but the mean delay per delayed flight increases appreciably in
the optimal solution.

(4) In one sense, the optimal solution discriminates against com-
bined flights more than CASA does, because it increases the percent-
age of delayed flights that are combined and the percentage of the
total delay that is incurred by combined flights. In another sense,
however, the optimal solution does not discriminate against com-
bined flights more than CASA does, because it leaves unchanged the
ratio of the mean delay per combined flight over the mean delay per
simple flight.

(5) The length of the time periods into which time is discretized
does not seem to affect appreciably the total delay in the optimal
solution.

CONCLUSIONS

This paper has presented what seems to be the first concrete evidence
for the importance of incorporating optimization models into the Eu-
ropean slot allocation process. The computational results of the pre-
vious section suggest that optimal slot allocation can sometimes re-
duce both the total and the maximum imposed delays, resulting in a
utilization of the European airspace that is at once more efficient and
more equitable.

The above conclusion needs two kinds of qualifications.

(1) Besides ensuring safety and optimizing the use of the available
capacity, an important objective of the CFMU is to guarantee the
equitable treatment of all users of the European airspace. As long as
this principle of equity is understood as implying the “First Planned,
First Served” principle applied by CASA, equity will conflict with the
minimization of delays, and an optimization procedure will seem out
of place. This reasoning, however, assumes that the objective of
equity is more important than the objective of optimizing the use of
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the available capacity, and it is not clear why this should be the case.
Moreover, it is not clear why the principle of equity should be under-
stood as implying the First Planned, First Served principle; another
possible way to ensure equity is to include in the optimization models
constraints guaranteeing that the mean delay per flight is the same
for all airlines (Vranas, 1992; cf. Maugis, 1995).

(2) The optimal solutions turned out by the integer programming
models are not exactly comparable to the CASA solutions, mainly for
the following reasons. First, CASA goes through an “operational opti-
mization” process which ensures the geometric feasibility of the slot
allocation pattern; this feasibility is not ensured by the integer pro-
grams. Second CASA does not discretize time, whereas the integer
programs do. Although evidence was adduced earlier that the discre-
tization effects may not be important in terms of the total delay, these
effects may still be important in terms of the feasibility of solutions,
as indicated by the fact that, as discussed earlier, in one case CASA
found a feasible solution, but the corresponding integer program was
infeasible.”® In spite of these qualifications, however, some of the
differences between the CASA and the optimal solutions reported in
the previous section are of sufficient magnitude to indicate that they
would survive an exact comparison.

Although, at the current state of the art, optimization models can-
not be used for the dynamic updating of slots (unless they are imple-
mented on supercomputers), such models could very well be used
even now for the pretactical operations of the CFMU, in which there
is not such a high time pressure as in the tactical activities. Moreover,
if quick and efficient heuristics, such as those presented in Andreatta
et al. (1994) and Brunetta et al. (1995), were extended to the case
with sector capacities, near-optimal solutions could be found even
with ordinary workstations sufficiently quickly to allow dynamic up-
dating of slots.

Following are some suggestions for future research.

(1) More insight is needed into the conditions under which optimal
slot allocation improves the CASA solutions. For example, it was seen
earlier that the CASA solution was near optimal for scenario S4 and
close to optimal for scenario S5. More computational comparisons are
needed to clarify such phenomena.

(2) The effect of discretizing time should be further investigated.
In particular, it should be clarified why sometimes the integer pro-
gram is infeasible, whereas CASA finds a feasible solution.

(3) Comparisons between optimal slot allocation and the CASA
solution should also be effected for bigger problems with, say, 10,000

158ee Vranas (1992), and Vranas et al. {1994a) for another case in which two optimization
problems had almost the same optimal values, but the optimal solution of the one was highly
infeasible for the other.
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regulated flights, since the CFMU operations currently cover such
big problems. It cannot just be assumed that the advantage of opti-
mization models over CASA will remain the same when the size of
the problem changes; the advantage may increase or decrease. More-
over, it is not clear whether such big problems can be solved within
10 minutes, even by using supercomputers. Model (P,) should also be
investigated for big problems, because its smaller size may allow it
to perform better than model (P;).

(4) Finally, the structure of optimal slot allocation and that of the
CASA solutions should be compared in more detail, with respect, e.g.,
to the variations from the First Planned, First Served principle in-
duced by the optimal solutions. Moreover, alternative ways to define
equity should be considered and incorporated as constraints in the
optimization models, and their effect on the optimal solutions should
be investigated.

We conclude by expressing the hope that the present work will
spur further research on this eminently practical problem.

APPENDIX: RELATING DELAY AND CAPACITY DECISION
VARIABLES

In models (P,) and (P,) of the second section, if the delay-capacity
constraints are omitted, the optimal solution has all g, equal to 0—
an absurd result. It should be thus emphasized that the discussion
of the delay-capacity constraints was omitted from the second section
not because of any lack of importance, but because it requires a rather
lengthy exposition.

The following subsection formulates the basic delay-capacity con-
straints. The second subsection gives a method for generating a large
number of additional delay-capacity constraints and discusses which
of these constraints it is advisable to include in models (P,) and (P,).

The Basic Delay-Capacity Constraints

Denote by 7., the set of flights that are scheduled to enter sector s
at time period ¢ and to exit at ¢'. (The number of such flights was
denoted above by II,,,—see Table 1.) Similarly, denote by 72, the set
of flights that are scheduled to depart from airport % at time period ¢
and by 7, the set of flights that are scheduled to arrive at k at . Then
the following constraints hold:

G

2 8 = 2 iply, BHES X T, t+1 =t <t+1+L;; (26)

fEFsur . S
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G
> g = Xidi, B EX X T; @7
fe_'ff, i=1

(£
D g =2 irk, BDEXXT (28)
fEF ke i=1

To understand, e.g., constraints (26), notice that pS,’ of the flights in
7., have g, = G and so contribute a total of GpS,. to the sum at the
left-hand side of (26); pS,. of the flights in 7., have g, = G — 1 and
so contribute a total of (G — 1)pS;:! to the sum at the left-hand side
of (26); and so on. Similarly for constraints (27) and (28).

A given variable g, appears in exactly one of constraints (27) and
in exactly one of (28), but it appears in as many of constraints (26)
as there are regulated sectors that flight f goes through.

Additional Delay-Capacity Constraints

It will be shown now how to generate additional constraints relating
the delay decision variables g, with the sector capacity decision var-
iables pi,. Constraints relating g, with d}, and with r}, can be simi-
larly generated.

Consider any set of flights ¢ which are scheduled to enter sector s
at t and to exit at ¢’ (i.e., consider any subset of 7,,.). Denote by IL,.
the number of flights in ¢-that have g, = i. Clearly, 0 = IL,. =< pj,..
Consider now the sum =6 (i — a)Ili,., where a is any integer from
1 to G. We will relate this sum to 2,8, — a).

By a reasoning similar to that establishing constraints (26), it can
be seen that (g — @) = 24 — ), By neglecting the terms
with nonpositive coefficients i — a in the right-hand side of the pre-
vious equality, we get Z,.,(g; — a) = 2, — o)IT;,. But given that
Hitt" = pitt" we ﬁnaﬂy get:

G
S -a)= 2 G~ P ¥ 8C Fu (29)

fes i=a+l

A similar reasoning, neglecting the nonnegative rather than the
nonpositive coefficients i — ¢ in the sum 26 (i — a)Il,, establishes
the following additional constraints: '

a-1
Sa-g)<= 2 @— i) ¥ 8 C For (30)
i=0

fEa
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Substituting the values of @ from 1 to G in (29) and (30) gives, e.g.,
for G = 4 the following seven sets of constraints'®:

gﬂ & — 3) = pos (31)

gﬂ @ — 2) = 2pf + Dius (32)

feza g, — 1) = 3pi, + 2p%, + Pl (33)
Zﬂ 1 - g) = pls (34)

gﬂ (2 — &) = 2p%w + Pa; (35)

gﬂ (3 — &) = 3pdw + 2ps + Pl (36)

z 4 - gf) = 4pgtt' + 3psltt' + zpfu' + pgtt', Vo C Ty (37)

fEs

In order to understand the meaning of the above sets of con-
straints, consider, e.g., constraints (31). Consider first the case in
which g has just one element. Then (31) become: (vf€7,,,) g — 3 =
Puv- Therefore, if there is at least one flight in 7., with g, = 4, the
corresponding constraint will give: p%,. = 1. Consider next the case
in which ¢ has two elements. Then, if there are at least two flights in
Fo With g, = 4, the corresponding constraint will give: p;,, = 2. In
conclusion, if all of constraints (31) are included in the models, then
pi. will be no less than the value it should have (the value it should
have being, of course, the number of flights in 7,,, with g, = 4).

Similar reasoning shows that, if p?, has the value it should have,
then including all of constraints (32) in the models ensures that p3,
will be no less than the value it should have. This means that includ-
ing constraints (32) makes sense only if all of constraints (31) are
also included. However, even if all of constraints (31) are included,

8 The eighth set of constraints is Z,.,g, = X}, ip,, which is entailed by (26).

i
H
£
i
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constraints (32) might still not be effective; this is because (31) do
not exclude the case in which pl,. is greater than the value it should
have. This case, however, is not to be expected, given constraints (26)
and the fact that the sum of all g; is to be minimized.

Two conclusions arise from the above discussion. First, (32) should
be included in the models only if all of (31) are also included, (33)
should be included only if all of both (31) and (32) are also included,
and similarly for (34) to (37). Second, (32) are less useful than (31),
(33) are less useful than (32), and similarly for (34) to (37).

A problem may arise because the number of any of the above sets
of constraints looks quite high: it is equal to the number of subsets
of 7., minus 2,'" namely to 2™ — 2. On the other hand, I, is
normally fairly small, rarely exceeding 10. So the number of these
constraints may not be inordinately high after all. But a more serious
problem might be that, even if all of the above seven sets of con-
straints were included in the models, it might still be the case that
in the optimal solution, the values of g, and p., would not be fully
compatible.

The easiest course of action in such a case would be to keep the
values of g, turned out in the optimal solution and to modify the
values of pi, in order to make them compatible with g, This may
require the increase of some p’,., resulting thus possibly in the tem-
porary violation of some sector capacity constraints; this violation
would have to be then heuristically compensated for. It should be
noted that such a way of proceeding should not be unacceptable to
the CFMU. Indeed, currently the CFMU accepts the concept of “slot
forcing” (EUROCONTROL, 1993, Ver. 1.8, pp. 14-15; see also EU-
ROCONTROL, 1993, Ver. 1.0, p. 10), which is a temporary violation
of the sector capacity constraints (a violation subsequently compen-
sated for by CASA (Gainche, 1996)), arising from the fact that some
flights are subject to “multiple regulations” (i.e., pass through several
congested sectors): when the time comes to allocate a slot to such a
flight, all available capacity in some of the sectors through which the
flight passes may have already been used up.

In conclusion, the best way to relate the delay and the capacity
decision variables cannot be fully determined a priori, but needs to
take into account computational experiments. Such experiments
were not undertaken in the context of the present work, because it
was considered more urgent to compare current slot allocation prac-
tice with optimal slot allocation based on an established model.

171t can be seen that, for ¢ = 7., all of (31)—{37) are entailed by (26) and {4).
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ACRONYMS

ATCSCC Air Traffic Control System Command Center

CASA Computer Assisted Slot Allocation

CFMU Central Flow Management Unit

CPU central processing unit
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FAA Federal Aviation Administration

SAP Slot Allocation Problem
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