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Abstract. Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt Malament and Zabell’s defense of absolute continuity to support epsilon-continuity, and I prove that, for epsilon-ergodic systems, every epsilon-continuous invariant probability measure is very close to the microcanonical.

1. Introduction.

The fact that classical equilibrium statistical mechanics (SM) works is deeply puzzling. Take an isolated system in equilibrium; e.g., a gas in an insulated box. Define the phase space of this system as the set of all possible microstates of the gas. Choose a macroscopic observable, like pressure, and define the corresponding phase function as the function that gives the value of the observable for each microstate in the phase space. Compute the phase average of this function; i.e., its average over the phase space with respect to a specific probability measure, the so-called microcanonical measure. Lo and behold, the result of the computation reliably predicts the measured value of the observable. What’s amazing about this method is that it seems to proceed in blithe ignorance of the equations of motion that govern the dynamical evolution of the microstate of the gas. Why does the method work for gases composed of various kinds of molecules interacting with various potentials? What justifies the use of the microcanonical measure? What’s so special about taking averages? The recipe works, but its success cries out for explanation.

A traditional attempt to supply an explanation relied on the assumption that the systems for which SM works are ergodic. A system is ergodic if, given almost any point of the phase space, the trajectory that goes through that point sooner or later crosses every region of the phase space that has positive measure. The crucial feature of ergodic systems is given by Birkhoff’s theorem: given almost any trajectory, the infinite time average of any phase function along that trajectory exists and is equal to the phase average (and is thus independent of the trajectory). But how does the equality of the phase average with the infinite time average explain the equality of the phase average with the measured value? Here is an attempt to bridge the gap between measured values and infinite time averages: given that every measurement extends over a time interval that is very long with respect to microscopic time scales, a measured value is equal to a finite time average that closely approximates the infinite time average. Critics were quick to react to this attempt: if measurements always lasted long enough for finite time averages to approximate infinite time averages, then how could measurements ever reveal that a system is not in equilibrium? This explanation has thus fallen into disrepute.

Khinchin (1949) proposed an alternative explanation that was intended to dispense with ergodicity. Khinchin relied on two fundamental observations. First, the systems for which SM works are composed of large numbers of particles. Second, the phase functions that correspond to macroscopic observables have a special form: they are sums of further functions, each function in the sum depending on the state of a single particle. Khinchin then proved that, as the number of particles goes to infinity, the microcanonical measure of the set of points in the phase space for which the value of the phase function is very close to the phase average goes to one. The appeal to infinite time averages (and to ergodicity) became thus redundant: the measured value is equal to some value of the phase function (or to some finite time average) and is thus with high microcanonical probability approximately equal to the phase average. But why should high microcanonical probability correspond to high “physical” probability? Khinchin’s account is silent on this point, and this is its fundamental weakness.

Enter Malament and Zabell (1980). They attempt to clinch Khinchin’s argument by providing a justification for the microcanonical measure. Their justification reintroduces ergodicity. Here are some details. Suppose that the probabilities of finding an equilibrium system in various regions of the phase space are given by some invariant measure (i.e., a measure that assigns the same value to a region and to its images under the dynamical flow). Malament and Zabell argue that, because we can prepare systems with only limited precision, this equilibrium measure must be “translation-continuous”; i.e., roughly, it must assign approximately equal values to any two regions one of which is a small displacement of the other. It follows that the equilibrium measure must assign value zero to every region of Lebesgue or, equivalently, microcanonical measure zero; i.e., it must be absolutely continuous (with respect to Lebesgue or to the microcanonical measure). But a corollary of Birkhoff’s theorem says that, if a system is ergodic, then the unique absolutely continuous invariant probability measure is the microcanonical! Is this at last the sought-for justification?

Earman and Rédei (1996) are not convinced. They raise two main worries. First, they claim that most systems for which SM works are very probably not ergodic. Second, they point out that, “even if the system is just a ‘little bit’ non-ergodic, the uniqueness result fails—and it fails entirely, not just a little bit” (1996: 71). To appreciate the second point, notice that the phase space of a non-ergodic system contains an invariant set (i.e., a set of trajectories) of microcanonical measure greater than zero (and less than one). If the system is just a little bit non-ergodic, then this invariant set has tiny measure. But absolute continuity provides constraints only for sets of measure exactly zero, not for sets of positive but tiny measure. Intuitively, then, one expects that absolutely continuous invariant probability measures very distant from the microcanonical will exist. Disaster?

Something strange is going on. Mathematically, the reasoning of Earman and Rédei is impeccable; intuitively, however, why should it matter if there is an invariant set of such tiny measure that it cannot be detected by measurements? This is not an argument, but it’s the motivation behind the present paper.

In this paper I carry the debate one step further by proposing a modification of the Malament-Zabell explanation that avoids the Earman-Rédei objections. My strategy has five ingredients. (1) I make rigorous the notion of a system’s being just a little bit non-ergodic. Here is a rough definition: a system is (-ergodic if its phase space has an invariant subset of measure 1–( such that, given almost any point in that subset, the trajectory that goes through that point sooner or later crosses every region of the subset that has positive measure. (2) I review computational evidence indicating that the systems for which SM works are (-ergodic with ( tiny or zero. (3) I generalize the notion of absolute continuity so that I can get constraints even from sets of positive measure: a measure is (1/(2-continuous (with respect to the microcanonical measure) if it assigns value at most (2 to every region of microcanonical measure at most (1. (4) I prove that a condition of “translation-closeness” entails that the equilibrium measure is (/(2-continuous with (2 small. The translation-closeness condition is similar to (but different from) Malament and Zabell’s translation-continuity condition and says roughly that, if a region of the phase space is a small displacement of another region, then the probability of finding the system in the first region is close to the probability of finding the system in the second region. I justify this condition by appealing to the “coarse-graining” (discretization) of the phase space that results from the limited precision of measurements. (5) I prove that, if a system is (-ergodic with ( small or zero, then every (/(2-continuous invariant probability measure with (2 small is very close to the microcanonical.

Besides escaping the Earman-Rédei objections, my amendment of the Malament-Zabell explanation has the virtue of avoiding the implausibly strong conclusion that only the microcanonical measure works. Gibbs (1902) points out that the so-called canonical measure works just as well as the microcanonical. Leeds (1989) argues that the equilibrium measure is not exactly the microcanonical. Batterman (1997) adduces theoretical reasons for expecting that many measures besides the microcanonical will work. My approach is consonant with these insights, since I only conclude that the equilibrium measure is very close to the microcanonical.

In Section 2 I examine what exactly it is that we are trying to explain. In Section 3 I present Malament and Zabell’s explanation, Earman and Rédei’s objections, and an outline of my response. In Section 4 I defend epsilon-ergodicity. In Section 5 I defend epsilon-continuity and translation-closeness. In Section 6 I provide some concluding remarks.

2. The explanandum.

Several issues in the foundations of statistical mechanics are of philosophical interest (Sklar 1993), but the program of which this paper is a continuation focuses on a severely circumscribed explanandum (Malament and Zabell 1980: 339). The aim is to explain why, for certain physical systems and for certain macroscopic observables, whenever a system is in equilibrium and we measure the value of an observable, we reliably get a number approximately equal to the microcanonical phase average, with respect to a mathematical model of the system, of a phase function that corresponds to the observable. I will comment briefly on five aspects of this explanandum: (1) the physical systems, (2) the mathematical models, (3) the macroscopic observables, (4) the microcanonical phase average, and (5) the notion of equilibrium.

(1) The physical systems of interest are those for which SM (classical equilibrium statistical mechanics) works; i.e., those for which the approximate equality of phase averages with measured values mentioned in the explanandum holds. Standard examples include classical fluids and high-temperature solids (Reichl 1980; cf. Quay 1978: 53-54).

(2) The mathematical models of interest are known as autonomous Hamiltonian dynamical systems. I define a dynamical system as a pair <X, Tt>.
 The phase space X is a set whose members (the phases) correspond to the possible microstates of the physical system. The flow Tt (t ( R) is a one-parameter group of one-to-one maps of X onto itself that describes the dynamics: if the phase at time t0 is x ( X, then the phase at time t0+t is Tt(x) ( X. A dynamical system is Hamiltonian if X ( R2n and the flow is generated by Hamilton’s equations: dqi/dt = (H/(pi, dpi/dt = –(H/(qi (i = 1, …, n). n is the (enormous) number of degrees of freedom (e.g., the number of particles), qi are generalized position coordinates, pi are generalized momenta, and the Hamiltonian H is a function of qi, pi, and t whose value (under certain conditions) is equal to the energy of the physical system. A Hamiltonian system is autonomous if (H/(t = 0; then it can be shown that dH/dt = 0, so that the energy is a constant E and motion in X is confined to the energy surface SE (i.e., the subset of X defined by H = E).

(3) The macroscopic observables of interest are those that can be represented by phase functions (functions of X into R); i.e., those that can be defined with respect to a single microstate (e.g., pressure; cf. Farquhar 1964: 22).

(4) Given a probability measure ( on (a (-algebra of measurable subsets of) X, the phase average <f>( of a phase function f is defined as (X f d(; i.e., as the expectation (first moment) of f when f is considered as a random variable. The microcanonical phase average <f>m of f is the phase average of f with respect to a particular probability measure, the microcanonical measure (m, which is confined to an energy surface SE (i.e., (m(SE) = 1), and whose formula is given in the Appendix (Theorem 3).

(5) The physical systems of interest exhibit thermodynamic behavior (i.e., essentially, approach to equilibrium), but the fact that they do is not part of the explanandum. From the point of view of the explanandum, “equilibrium” must be defined operationally, without reference to a probability measure (Leeds 1989: 328): a physical system is in equilibrium at time t if, e.g., measurements reveal that the values of macroscopic observables remain approximately constant during a sufficiently long time interval that contains t.

3. The Malament-Zabell explanation and the Earman-Rédei objections.

Consider any physical system of interest and let <X, Tt> be a corresponding (autonomous Hamiltonian) dynamical system. Consider any macroscopic observable of interest and let f be a corresponding phase function. Let t be any time at which the physical system is in equilibrium. Let E be the energy of the physical system and let SE be the corresponding energy surface. Let A be any measurable subset of SE. Let Pt(A) be the probability that the microstate of the physical system at t corresponds to a phase in A. Then, according to Malament and Zabell (1980):



(P1) There is a small ( > 0 such that (m({x ( SE: |f(x) – <f>m| ( (}) ( 1;



(P2) Pt(A) = (m(A).

Loosely speaking, P1 says that each phase function of interest is approximately constant over microcanonically-almost-all the energy surface and approximately equal to its microcanonical phase average, and P2 says that the microcanonical measure gives the “physical” probabilities of finding an equilibrium system at given microstates. P1 and P2 together entail that Pt({x ( SE: |f(x) – <f>m| ( (}) ( 1, from which the explanandum of Section 2 follows (assuming that measurements are sufficiently accurate; I return to this point in Section 5).

P1 was proven by Khinchin (1949) for systems of noninteracting particles and by Mazur and van der Linden (1963) and Lanford (1973) for some systems of interacting particles. Thus Malament and Zabell focus on P2. Before I give their argument for P2, I need to introduce four definitions. (1) A measure ( is invariant exactly if, for every (measurable) A and for every t, ((A) = ((Tt(A)); i.e., ( assigns the same value to A and to the images of A under the flow. (2) A set A is invariant exactly if, for every t, Tt(A) = A; equivalently, the trajectory {Tt(x): t ( R} through any member x of A is a subset of A (i.e., A is a set of trajectories). (3) An invariant probability measure ( is ergodic exactly if, for any invariant set A, ((A) is 0 or 1. Equivalently, X is (-indecomposable: X cannot be partitioned into invariant sets more than one of which have positive (-measure. Still equivalently, the trajectory through (-almost every member of X intersects every subset of X that has positive (-measure; formally, (({x ( X: ((A ( X) (((A) > 0) ( ({Tt(x): t ( R} ( A ( ()}) = 1. (4) A measure (2 is absolutely continuous with respect to (henceforth abbreviated as “a.c. wrt”) a measure (1 exactly if, for every A, (2(A) = 0 if (1(A) = 0. Now Malament and Zabell’s argument for P2 can be formulated as follows. (Some of the universal quantifications that precede P1 above are also implicit here. (1 and (2 are any probability measures.)



(P3) If (1 is ergodic and (2 is a.c. wrt (1 and invariant, then (2 = (1;



(P4) (m is ergodic;



(P5) Pt is a.c. wrt (m;



(P6) Pt is invariant.

Therefore:
(P2) Pt = (m.

Clearly, the argument is valid. P3 is uncontroversial: it’s a theorem of ergodic theory (Cornfeld et al. 1982: 15). I will examine P5 in Section 5; now I turn to P4.

Earman and Rédei (1996) argue that, for typical systems of interest, (m is very probably not ergodic. I’m not convinced, but in this paper let me grant for the sake of argument that P4 is false. Then (see definition 3 above) there is some invariant set B with (m(B) ( {0, 1}. But suppose that (m is just a little bit non-ergodic, in the sense (roughly) that (m(B) is tiny. Then one might salvage an explanation of the Malament-Zabell type by establishing, not that (P2) Pt and (m are equal, but rather that (Q2) Pt and (m are (-close for some small ( > 0 (in other words: Pt and (m are epsilon-close), where two measures (1 and (2 are said to be (-close exactly if, for every A, |(2(A) – (1(A)| ( (. P1 and Q2 together would entail the explanandum (assuming, again, that measurements are sufficiently accurate).

How would one establish Q2? Maybe by replacing P3 with (P3*): If (1 is just a little bit non-ergodic and (2 is a.c. wrt (1 and invariant, then (1 and (2 are (-close for some small ( > 0. Earman and Rédei vaguely anticipate such a move, and one of their arguments (1996: 72) can provide a reply. Let (’ be any invariant probability measure confined to B (i.e., (’(B) = 1) that is a.c. wrt (m. Let (’m be the normalized restriction of (m to X\B (i.e., (’m(() = (m(( ( Bc)/(m(Bc)). Then (( = ((’m + (1–()(’ (0 ( ( ( 1) is an invariant probability measure that is a.c. wrt (m. But |(((B) – (m(B)| is equal to |1 – ( – (m(B)| and is thus close to 1 for small ( (recall that (m(B) is tiny), so that (( and (m are not (-close for small (, and P3* is false.

Absolute continuity is the culprit. Because (m(B) is positive (though tiny), (((B) can be close to 1 even though (( is a.c. wrt (m: absolute continuity would restrict (((B) only if (m(B) were exactly 0. So I propose to replace absolute continuity with (1/(2-continuity: given numbers (1 and (2 in [0, 1), I will say that (2 is (1/(2-continuous with respect to (1 exactly if, for every A, (2(A) ( (2 if (1(A) ( (1. Now my amendment of the Malament-Zabell explanation replaces P2 through P6 with:



(Q3)
If (1 is (-ergodic and (2 is (/(2-continuous wrt (1 and invariant, then (1 and (2 are (3-close with (3 = 2(2 + ((1–()-1;



(Q4)
(m is (-ergodic for some tiny or zero (;



(Q5)
Pt is (/(2-continuous wrt (m for some small (2 > 0 (( is the same as in Q4);



(Q6)
Pt is invariant.

Therefore:
(Q2)
Pt and (m are (3-close for some small (3 > 0.

Although I have not yet defined (-ergodicity (Section 4), it should be clear that the above argument is valid. Thus my amendment of the Malament-Zabell explanation avoids the Earman-Rédei objections. Q3 follows from a theorem which I prove in the Appendix (Theorem 1). In the next two sections I defend Q4 and Q5 respectively. (See footnote 12 for some remarks on Q6.)

4. Epsilon-ergodicity and its ubiquity.

We saw that an invariant probability measure ( is ergodic on a phase space X exactly if X is (-indecomposable. Similarly, I will say that ( is ergodic on an invariant subset Y of X that has positive (-measure exactly if Y is (-indecomposable; i.e., Y cannot be partitioned into invariant sets more than one of which has positive (-measure. (Equivalently, the trajectory through (-almost every member of Y intersects every subset of Y that has positive (-measure. Still equivalently, every invariant subset of Y has (-measure 0 or ((Y).) Now given a number ( in [0, 1), I will say that ( is (-ergodic on X exactly if ( is ergodic on an invariant subset Y of X with ((Y) = 1–(. I will say that ( is epsilon-ergodic if ( is (-ergodic with ( tiny or zero. (Note that I distinguish between (-ergodicity and epsilon-ergodicity. Strict ergodicity, corresponding to ( = 0, is a special case of (-ergodicity and of epsilon-ergodicity.) Thus Q4 says that the phase space (equivalently—because (m(SE) = 1—, the energy surface) of every dynamical system that corresponds to a physical system of interest has a microcanonically indecomposable invariant subset of microcanonical measure almost or exactly one. Why should we accept Q4?

In contrast to systems with two degrees of freedom, Hamiltonian systems with many degrees of freedom are still poorly understood (Lichtenberg and Lieberman 1992: 439). Nevertheless, some computational evidence indicates that nonintegrable
 Hamiltonian systems approach ergodicity (with respect to the microcanonical measure) when the number of degrees of freedom increases. For example, a one-dimensional system of N self-gravitating plane parallel sheets of uniform density has been studied computationally by several investigators (Froeschlé and Scheidecker 1975; Froeschlé 1978; Benettin, Froeschlé, and Scheidecker 1979; Wright and Miller 1984; Reidl and Miller 1992, 1993). It seems that, as N increases, the system approaches very quickly strict ergodicity and reaches it for N = 11. As a second example, a system of N coupled “symplectic maps” (which is much easier than Hamiltonian systems to study computationally but is expected to share many features with Hamiltonian systems) was studied by Falcioni et al. (1991). It seems that the volume of the non-ergodic portion of the phase space is quite small and decreases exponentially with N (for N ranging from 10 to 200). A similar conclusion was reached by Hurd et al.
 (1994; cf. Györgyi et al. 1989).

It might be objected that other nonintegrable Hamiltonian systems fail to approach ergodicity when the number of degrees of freedom increases. Take the Fermi-Pasta-Ulam (FPU) system, a one-dimensional chain of N particles with weakly nonlinear nearest-neighbor interaction (Fermi et al. 1955/1965; Ford 1992). Computational studies for N up to 1024 suggest that every FPU-like system has an energy threshold (the so-called equipartition threshold) such that equipartition of energy among the degrees of freedom (a necessary condition for ergodicity) is or is not approached according to whether the energy of the system falls above or below the threshold respectively (Livi et al. 1985a, 1985b; Kantz 1989; Galgani et al. 1992; Kantz et al. 1994; Benettin 1994: 219-220). It can be shown that at least approximate equipartition is necessary for epsilon-ergodicity; thus it seems that an FPU-like system with large N but with energy below the threshold is not epsilon-ergodic. It turns out, however, that the equipartition threshold is in a sense fictitious. Recent computational studies suggest that, at least for large N, at least approximate equipartition is always achieved; only the time to equipartition depends on the energy, and is short or very long according to whether the energy falls above or below the threshold respectively (Pettini and Landolfi 1990; Pettini and Cerruti-Sola 1991; De Luca, Lichtenberg, and Lieberman 1995; cf. De Luca, Lichtenberg, and Ruffo 1995). I conclude that FPU-like systems provide no counterexample to the conjecture that nonintegrable Hamiltonian systems with many degrees of freedom are epsilon-ergodic.

The existence of an energy threshold has also been documented for Lennard-Jones (LJ) gas systems (Bocchieri et al. 1970; Diana et al. 1976; Galgani and Lo Vecchio 1979; Benettin et al. 1980; Kazumasa and Tomohei 1996); i.e., systems of N particles in a box interacting via the Lennard-Jones potential, a “potential which gives a very good approximation to the interaction between atoms” and “is perhaps the most widely used interparticle potential” in SM (Reichl 1980: 363, 367). I am not aware of any studies suggesting that the energy threshold for LJ systems is fictitious in the sense explained above for FPU-like systems. So suppose, for the sake of argument, that LJ systems with large N but with energy below the threshold are not epsilon-ergodic. It doesn’t follow that Q4 is false, because Q4 refers only to Hamiltonian systems that correspond to (i.e., adequately model) physical systems of interest. The energy threshold corresponds to very low temperatures (Cercignani et al. 1972; e.g., about 4.3 K for argon: Kazumasa and Tomohei 1996: 4688), at which quantum effects become important (Reichl 1980: 399), so that the physical systems at lower temperatures which are the candidates for corresponding to the LJ systems in question are not adequately modeled by Hamiltonian systems as defined in Section 2 and thus don’t correspond to the LJ systems in question.
 Moreover, there is evidence that, above the energy threshold, LJ systems with large N are epsilon-ergodic. For example, Stoddard and Ford (1973) studied computationally a two-dimensional LJ gas system with N = 100 and found ergodic behavior (“exponential separation with time of most initially close phase-space trajectories”
) “over a fairly wide density range”, “from very dilute, ideal-gas densities up to 15% of the liquid density” for the case of neon. These results “cannot rule out stable, nonergodic phase-space regions; however, they do indicate that such regions, if they exist, are likely to be quite small” (1973: 1511). In other words, the system may be (-ergodic for tiny but positive (. (Wightman claims that most experts regard LJ gas systems as unlikely to be strictly ergodic (1985: 19).) Given that ( is tiny for N = 100, one can expect ( to be fantastically small for realistic-size systems (N around 1023); this observation will prove crucial in the next section.

The above evidence is admittedly scant. Nevertheless, it seems reasonable to reach the tentative conclusion that the dynamical systems of interest are epsilon-ergodic. (This conclusion is compatible with the possibility that these systems are strictly ergodic.
) My defense of Q4 is now complete. In the next section I defend Q5.

5. Epsilon-continuity and translation-closeness.

Before I give my argument for Q5, it will help to review Malament and Zabell’s argument for P5. Malament and Zabell start with the following intuition: “Given two measurable sets on the constant energy surface, if one is but a small displacement of the other, then … the probability of finding the exact microstate of the system in one set should be close to that of finding it in the other” (1980: 346). Malament and Zabell formalize this intuition by claiming that Pt is “translation-continuous”. Denoting by d(A, t) the “displacement” of a set A by t, a measure ( is translation-continuous exactly if, for every A, limt(0 ((d(A, t)) = ((A); i.e., ((>0 ((>0 ||t|| < ( ( |((d(A, t)) – ((A)| < (. Now Malament and Zabell’s argument for P5 can be formulated as follows:



(P7) If ( is translation-continuous, then ( is a.c. wrt (L (Lebesgue measure);



(P8) If ( is a.c. wrt (L, then ( is a.c. wrt (m;



(P9) Pt is translation-continuous.

(Strictly speaking, Malament and Zabell omit P8 and define absolute continuity only wrt (L.) The conjunction of P7, P8, and P9 entails that Pt is a.c. wrt (m; i.e., P5. P7 follows from a theorem proven by Malament and Zabell (but in the context of Rn rather than of SE, so that d(A, t) = A + t). P8 follows from the definition of (m (Appendix, Theorem 3). Thus the only controversial premise is P9.

P9 is not the only possible way of formalizing the intuition with which Malament and Zabell start. Another possible way is by claiming that Pt is “translation-close”. Given numbers (0 and (0 in (0, 1), I will say that a measure ( is (0/(0-translation-close exactly if, for every A, ||t|| < (0 ( |((d(A, t)) – ((A)| < (0. I will say that ( is translation-close if ( is (0/(0-translation-close with (0 small. It can be shown that translation-closeness is neither weaker nor stronger than translation-continuity. Now my argument for Q5 replaces P7 through P9 with:



(Q7) If ( is (0/(0-translation-close and (( < ((2 – (0)(n, then ( is ((/(2-continuous wrt (L;



(Q8) If ( is ((/(2-continuous wrt (L, then ( is (/(2-continuous wrt (m;



(Q9) Pt is (0/(0-translation-close for some small (0.

((n and ( are positive numbers defined in the Appendix, Theorems 2 and 3 respectively.) The conjunction of Q7, Q8, and Q9 entails that Pt is (/(2-continuous wrt (m for (( < ((2 – (0)(n; i.e., for any (2 > (0 + (((n-1. Assuming that ( is sufficiently small, Q5 follows. (The minuteness of (, argued for in Section 4, is crucial here.
) Q7 follows from a theorem which I prove in the Appendix (Theorem 2; following Malament and Zabell, I formulate this theorem in the context of Rn rather than of SE). Q8 follows from the fact that (L is (/((-continuous wrt (m (Appendix, Theorem 3). Thus the only controversial premise is Q9.

Why should we accept that Pt is translation-continuous or translation-close? Malament and Zabell offer no argument for the translation-continuity of Pt; they only appeal to “the method by which the system is prepared or brought to equilibrium” (1980: 347). Leeds attempts to flesh out this appeal by arguing that the translation-continuity of Pt follows from the assumptions that “the microstate of the system is a continuous function of the parameters of preparation” and that “the probability distribution of these parameters is … translation-continuous in parameter space” (1989: 327).
 Any such attempt, however, faces difficult questions. “What exactly do constraints on our ability to delimit an ensemble have to do with real probabilities in the world?” (Sklar 1993: 184.) Does SM work only for systems that we have “prepared”? What counts as preparation?

It seems to me that the key to justifying translation-closeness is measurement rather than preparation. Malament and Zabell are apparently content with the fact that their proposal “makes no dubious claims about the actual measurement of macroscopic parameters” (1980: 347). But some claim about measurement is needed, given that the explanandum refers to measured values. At the very least, the assumption is needed that measurements are sufficiently accurate: if measured values had a large systematic deviation from values of phase functions, then the explanandum would not follow from the almost certain equality of phase functions with microcanonical phase averages.

Measurements, however, are not perfectly accurate. For a given macroscopic observable and a given method of measurement, let g1, …, gk be the (finitely many) possible measured values of the observable. (If, for instance, we are measuring pressure, then these values might range from 0.5 to 50 MPa, with increments of 0.01 MPa.) Let g be the function of SE onto {g1, .., gk} that gives the measured value which corresponds to every possible microstate. Then the energy surface can be partitioned into a collection of phase cells Gi = {x ( SE: g(x) = gi}; i.e., sets of phases that correspond to the same measured value. Let the coarse-grained (cf.: Farquhar 1964: 17-21; Friedman 1976: 153) equilibrium measure PGt be the restriction of Pt to (the smallest (-algebra that contains all) phase cells; i.e., PGt(A) = Pt(A) if A is a union of phase cells and PGt(A) is undefined otherwise. For purposes of the explanandum, it suffices to establish the epsilon-closeness to the microcanonical measure of the coarse-grained equilibrium measures PGt that correspond to the macroscopic observables of interest and to the available methods of measurement; the epsilon-closeness of the “fine-grained” equilibrium measure Pt would also be sufficient but is not necessary. (Indeed, let G( = {x ( SE: |g(x) – <f>m| ( (}. Given the assumption that measurements are sufficiently accurate, P1 entails that (m(G() ( 1 for some small ( > 0. Given that every G( is a union of phase cells, the explanandum can be established by showing that PGt(G() ( 1 for some small ( > 0. Therefore, it suffices to show that PGt and the restriction of (m to unions of phase cells are epsilon-close.) Now PGt is invariant if Pt is; thus it suffices to establish that (every) PGt is translation-close.

What have we gained by moving from Pt to PGt? Three things, I submit. First, now we have a reason for choosing between translation-continuity and translation-closeness, these two different but confusingly similar ways of formalizing the same intuition. PGt need not be translation-continuous: as long as we exclude “displacements” that leave a union of phase cells unchanged, any (no matter how small) displacement of a union of phase cells will result in the addition or deletion of at least one phase cell, and will thus result in a discontinuous probability change if it results in a probability change at all (because there are only finitely many possible combinations of phase cells). Second, now we have a rough argument for the translation-closeness of PGt. Sufficiently small displacements ((0 small) will result in the addition or deletion of only a few phase cells, and thus in a probability change at most equal to a small multiple k of maxi PGt(Gi). This maximum probability change, kmaxi PGt(Gi), which corresponds to (0 in the definition of (0/(0-translation-closeness, will be small (and translation-closeness will be established) if maxi PGt(Gi) is small. But maxi PGt(Gi) will in general decrease as the accuracy of measurements increases, and should thus be small if measurements are sufficiently accurate (i.e., if the coarse-graining is not “too coarse”). (Here the assumption is needed that maxi PGt(Gi) is small for perfectly accurate measurements; i.e., when the set of all possible measured values is f(SE), the set of all possible values of the phase function f. This assumption does not look implausible (given that f(SE) is in general infinite) and is much weaker than Q9, but I don’t know how to justify it.) Third, the value of (0 (= kmaxi PGt(Gi)) depends on the observable, because different observables in general yield different partitions of the energy surface into phase cells. Thus we have the beginning of an explanation for the fact that SM is more successful for some observables than for others (Livi et al. 1987; cf. Leeds 1989: 334-335, talking about nonequilibrium), because PGt may be closer to (m for some observables than for others.

The bottom line of my proposal is that a justification for the microcanonical measure is to be found in the coarse-graining (discretization) of the phase space that results from the limited precision of measurements. Interestingly, a similar proposal has been defended in a related context. A dynamical system can have uncountably many ergodic measures, resulting in different values of phase averages. Computational studies, however, suggest that the Lebesgue measure (L holds a privileged position, in the sense that, whenever a unique ergodic measure a.c. wrt (L exists, numerical computations of time averages yield a value equal to the phase average which corresponds to that measure (Benettin, Casartelli, et al. 1979). The reason seems to be that, “since digital computers are finite-state machines, they effectively discretize the continuous phase space” (Beck and Roepstorff 1987: 173). In fact, Góra and Boyarsky have proven that, for dynamical systems with X = [0, 1] that satisfy a certain condition, “the very process of discretization of the space forces the computer orbits to display only the” ergodic measure that is a.c. wrt (L (1988: 322; cf.: Boyarsky 1984, 1990; Corless 1994: 112).
 There is thus converging evidence that a satisfactory justification for the microcanonical measure may at last be at hand.

6. Conclusion.

Though not lacking in detail, the explanation of the success of SM that I proposed in this paper is in some respects programmatic. Here is a list of open questions. First, the argument for the translation-closeness of the coarse-grained equilibrium measures that I outlined in Section 5 needs to be made more precise. We need a definition of displacements with respect to unions of phase cells, a more rigorous relation between the accuracy of measurements and the maximum probability of a phase cell, and an argument for the assumption that I was unable to justify. Second, an argument is needed for Q6 (the invariance of the equilibrium measure).
 Third, epsilon-ergodicity needs to be investigated in more detail. It would be nice to have theoretical results showing both that ergodicity is approached when the number of degrees of freedom increases and that ( decreases faster than exponentially with the number of degrees of freedom.9 Fourth, the theorem that translation-closeness entails epsilon-continuity (Theorem 2 of the Appendix) needs to be generalized from Euclidean spaces to energy surfaces. Fifth, larger questions need to be addressed. Why does an equilibrium probability measure exist? What kind of probabilities are we talking about? Ultimately, why does equilibrium exist? (Sklar 1978: 192.)

In spite of its shortcomings, my proposal has several appealing features. First, it captures the widely held (though not yet rigorously justified) insight that large Hamiltonian systems are almost but not exactly ergodic. Second, it avoids the implausibly strong conclusion that only the microcanonical measure works. Third, it finds a place for the oft-repeated idea that a justification is needed only for a restricted set of phase functions, those that correspond to the macroscopic observables of interest. Fourth, it gives a hint as to why SM works better for some observables than for others. Fifth, it coheres with independently arrived at results in computer theory.

I believe that the above features make my proposal quite promising, and I hope that the present paper will stimulate further work in the direction of epsilon-ergodicity.

APPENDIX

Theorem 1 (epsilon-ergodicity and epsilon-continuity entail epsilon-closeness). Let <X, Tt> be a dynamical system. Let (, (1, and (2 be numbers in [0, 1) such that ( ( (1 and let (3 = 2(2 + ((1 – ()-1. Let (1 and (2 be probability measures on the same (-algebra of subsets of X. If (1 is (-ergodic and (2 is invariant and (1/(2-continuous with respect to (1, then (1 and (2 are (3-close.

Proof. I will consider the case of discrete-time dynamical systems, as do Cornfeld et al. (1982: 16) in their proof of an analogous theorem for strict ergodicity and absolute continuity (the theorem I called P3 in Section 3).

Since (1 is (-ergodic, there is an invariant, (1-indecomposable subset Y of X with (1(Y) = 1 – (. Let (’1 be the normalized restriction of (1 to Y (i.e., (’1(() = (1(( ( Y)/(1(Y)). Let A be any measurable subset of X, let (AY be the indicator function of the set AY = A ( Y (i.e., (AY(x) is 1 if x ( AY and is 0 if x ( AY), and let fn,   n ( N, be the finite time averages of (AY:  fn(x) = 

 Define F = {x ( Y: limn(( fn(x) = (’1(AY)}. Then the Birkhoff-Khinchin ergodic theorem (Cornfeld et al. 1982: 11) gives: (’1(F) = 1. Thus (1(F) = (1(Y) = 1 – (, so that (1(Fc) = (1(Yc) = ( ( (1, and (1/(2-continuity gives: (2(Fc) ( (2, (2(Yc) ( (2.

The Lebesgue dominated convergence theorem (Rudin 1976: 321) gives: limn(( (F fn d(2 = (F (’1(AY) d(2 = (2(F)(’1(AY). Now for any t: (Y (AY(Tt(x)) d(2 = (2(YTt(AY)) = (2(Tt(AY)) = (2(AY), because Y is an invariant set and (2 is an invariant measure. Thus: limn(( (Y fn d(2 = (2(AY). Therefore: limn(( (Y fn d(2 –            limn(( (F fn d(2 = (2(AY) – (2(F)(’1(AY) = limn(( (Y\F fn d(2 ( [0, (2(Y\F)] ( [0, (2(Fc)] ( [0, (2]. In conclusion: (*) (2(AY) – (2(F)(’1(AY) ( 0; (#) (2(AY) – (2(F)(’1(AY) ( (2.

Now (1(AY) = (1(A) – (1(AYc) ( (1(A) – (1(Yc) = (1(A) – (. Thus, using (*) and (2(F) ( 1 – (2, we get: (2(A) ( (2(AY) ( (1 – (2)(1(AY)(1 – ()-1 ( (1 – (2)((1(A) – ()(1 – ()-1. Therefore: (2(A) – (1(A) ( (1 – (2)((1(A) – ()(1 – ()-1 – (1(A) = ((1(A)(( – (2) – ((1 – (2))(1 – ()-1. If (2 ( ( we get: (2(A) – (1(A) ( (( – (2 – ((1 – (2))(1 – ()-1 = – (2 ( – (3. On the other hand, if (2 < ( we get: (2(A) – (1(A) ( – ((1 – (2)(1 – ()-1 ( – ((1 – ()-1( – (3, and half of (3-closeness is proven.

Similarly, (2(AY) = (2(A) – (2(AYc) ( (2(A) – (2(Yc) ( (2(A) – (2. Thus, using (#): (2(A) – (2 ( (2 + (1(A)(1 – ()-1. Therefore: (2(A) – (1(A) ( 2(2 + (1(A)((1 – ()-1 – 1) ( 2(2 + ((1 – ()-1 = (3, and the theorem is proven. (
Theorem 2 (translation-closeness entails epsilon-continuity). Let ( be Lebesgue measure on Rn and ( a probability measure on Rn. Let (0 and (0 be numbers in (0, 1) and let (n be the volume of an n-sphere of radius (0 (i.e., (n = ((1/2(0)n/((n/2+1), where ( is the gamma function). Then (1) entails (2):


(1) For every open set A ( Rn and every t ( Rn, ||t|| < (0 ( |((A+t) – ((A)| < (0;


(2) For every ( ( (0, (n), every (2 ( ((0, 1), and every B ( Rn, ((B) ( ((2 – (0)( ( ((B) ( (2.

Proof. Suppose that (2) fails. Then there are ( ( (0, (n), (2 ( ((0, 1), and B ( Rn such that ((B) ( ((2 – (0)( but ((B) > (2. Then (see Malament and Zabell 1980: 348) there is a closed subset C of B such that ((C) > (2 and (Rn ((C+t)d((t) = ((C) ( ((B) ( ((2 – (0)(. Let T = {t ( Rn: ((C+t) ( (2 – (0}. Then ((2 – (0)(  (              (T ((C+t)d((t) ( ((2 – (0)((T); thus ((T) ( (. Now let A = Cc; then A is open,  A+t = (C+t)c, and T = {t ( Rn: ((A+t) ( 1 – ((2 – (0)}. Now ((C) > (2 gives ((A) < 1 – (2, so that ((A) + (0 < 1 – ((2 – (0). Thus T is a superset of S = {t ( Rn: ((A+t) < ((A) + (0}, so that ((S) ( ((T) ( ( < (n, contradicting (1) (because (1) entails ((S) ( (n).










 (
Theorem 3 (epsilon-continuity of Lebesgue with respect to the microcanonical measure). Let S be an energy surface of an autonomous Hamiltonian dynamical system with Hamiltonian H and n degrees of freedom. Let (m be the microcanonical measure on S; i.e., (m(A) = (A |(xH|-1 d(L(x) / (S |(xH|-1 d(L(x), where (L is Lebesgue measure on R2n–1. Let ( = (supx ( S |(xH|) (S |(xH|-1 d(L(x). For any ( ( [0, 1), (L is (/((-continuous with respect to (m.

Proof. Suppose (m(A) ( (. Then ( ( (supx ( A |(xH|)-1 (A d(L(x) / (S |(xH|-1 d(L(x) ( (-1(L(A). Thus (L(A) ( ((.
(
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* I am grateful to Robert Batterman, Stephen Leeds, David Malament, Peter Railton, and especially James Joyce and Lawrence Sklar for helpful discussion or comments.

� This section presents the issues in a simplified and slightly imprecise way, eschewing formalism and omitting details. Rigor is introduced in later sections.

� My characterization of the physical systems of interest does not make the explanandum tautological: asking why SM works for the systems for which it works is like asking, e.g., why people who have blue eyes have blue eyes.

� I depart from the usual definitions of a dynamical system (Cornfeld et al. 1982: 6), which mention explicitly a measure on X. My reason is that I want to call measures rather than (except derivatively) systems “ergodic”, in order to emphasize that (infinitely) many ergodic measures can correspond to the same physical system.

� Roughly, an integrable Hamiltonian system displays quasi-periodic motion (Ford 1992: 276-279; Hénon 1983: 74-82). Generic Hamiltonian systems are neither integrable nor ergodic (Markus and Meyer 1974).

� Earman and Rédei (1996: 70) raise an objection along the following lines. The fact that the non-chaotic portion of the phase space has small measure does not suffice for epsilon-ergodicity; the indecomposability of the chaotic portion is also needed but was not confirmed by Hurd et al. (1994). But Hurd et al. examined cases with N only up to 7; their results are consistent with the possibility (confirmed by Falcioni et al. 1991: 2266) that epsilon-ergodicity is reached for much larger N.

� (It seems thus that it’s irrelevant for my purposes whether LJ systems—similarly, FPU-like systems—with large N but with energy below the threshold are epsilon-ergodic or not.) Are there physical systems that are adequately modeled by Hamiltonian systems but for which SM doesn’t work? If there are, then none of them should be epsilon-ergodic if epsilon-ergodicity suffices to explain the success of SM. (A related point is made by Sklar: “the system of two hard spheres in a cubical box is ergodic” (1973: 209), but does SM work for systems with a small number of degrees of freedom? Actually, it may: see Berdichevsky and Alberti 1991.)

� Such exponential separation, usually measured by computing the so-called Maximal Lyapunov Exponent (Benettin et al. 1976), indicates ergodicity.

� Strict ergodicity has turned out to be surprisingly difficult to prove even for relatively simple dynamical systems. Contrary to what is sometimes asserted, the system of N elastic hard balls moving in a cubical box with hard reflecting walls has not yet been proven to be ergodic for arbitrary N—only for N ( 4 (Szász 1996; cf. Simányi and Szász 1994: 587-590). Nevertheless, it seems that mathematicians are coming increasingly closer to a proof (Sinai 1970; Sinai and Chernov 1987; Krámli et al. 1991, 1992; Simányi 1992a, 1992b), and computational evidence suggests that this system is indeed ergodic (Zheng et al. 1996; cf. Ackland 1993). Note that systems of N elastic hard balls moving in boxes of very special types have been proven to be ergodic for arbitrary N (Bunimovich et al. 1992); some of these systems correspond to “a periodic Lorentz gas with a kind of a bounded free path (finite horizon) condition”, and are thus intermediate “between the gas of hard balls and the Lorentz gas model” (1992: 358).

� Using the definitions of (n and ( from the Appendix, one gets the impression that ( should decrease faster than exponentially with the number of degrees of freedom if (0 + (((n-1 is to be small. Lacking quantitative estimates of (, I don’t know whether this apparently stringent requirement is satisfied. My derivation of Q5 is thus incomplete; this is a topic for future research.

� I don’t think that this argument is valid. The continuity of the microstate as a function of the parameters of preparation excludes the existence of distant microstates resulting from close values of the parameters but is compatible with the existence of close microstates resulting from distant values of the parameters, hence with the existence of close microstates having distant probabilities.

� It should not be thought, however, that computational studies are worthless or that the evidence for epsilon-ergodicity that I adduced in Section 4 is suspicious. Precautions against roundoff errors are routinely taken by investigators (Lichtenberg and Lieberman 1992: 310-312). Although in artificial cases ‘numerical methods can introduce spurious chaos or even suppress actual chaos’, such discrepancies are rare in practice (Corless 1994: 107-109). A partial explanation of this rarity is provided by shadowing theorems: even though the computer orbit that passes through a given point of the phase space after sufficiently many iterations becomes very distant from the phase-space trajectory, for some kinds of dynamical systems the computer orbit is always closely “shadowed” by (i.e., is uniformly close to) some phase-space trajectory (Lanford 1983: 30-37; Benettin et al. 1978; contrast: Palmore and McCauley 1987; Corless 1994: 110-113).

� Q6 doesn’t follow from my definition of equilibrium (Leeds 1989: 332 n. 3). Actually, Q6 is false. Here is why. Given the definition of invariance, Q6 becomes: (t’(A(Pt(Tt’(A))=Pt(A)). Given that (t’(t”(A(Pt’(A)=Pt”(Tt”-t’(A))) (which follows from the definition of the flow Tt), Q6 is equivalent to: (t’(A(Pt(A)=Pt’(A)) (stationarity). Therefore, Q6 entails that the equilibrium measure Pt is equal to the initial measure P0 that corresponds to the time of preparation of the system (when such a time exists). But then P0 must be epsilon-close to the microcanonical if Pt is, whereas one can prepare systems so that P0 is very distant from the microcanonical. To avoid this problem, I replace Q6 with: ((<t-t*(A(|Pt(T((A))–Pt(A)|(( for small ( > 0), where t* is a time at which the physical system has settled down to equilibrium. It can be shown that this premise is equivalent to forward epsilon-stationarity: (t’>t*(A(|Pt(A)–Pt’(A)|(( for small ( > 0). Theorem 1 of the Appendix (hence also P1) can be similarly modified.
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