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Abstract. I present sound and complete natural deduction systems for (quantified modal) impera-
tive logic, in five steps. (1) Syntax: I introduce imperative formal languages by using the impera-
tive operator ‘!’ (“let it be the case that”); e.g., if ‘A’ is a declarative sentence, ‘!A’ is an imperative 
sentence. (2) Semantics: I introduce interpretations of imperative formal languages, and (building 
on previous work) I define what it is for a declarative sentence to sustain a (declarative or impera-
tive) sentence on an interpretation. (3) Semantic validity: I define an argument to be semantically 
valid exactly if, on every interpretation, every declarative sentence that sustains its premises also 
sustains its conclusion. (4) Syntactic validity: I define an argument to be syntactically valid exactly 
if its conclusion can be derived from its premises by applying certain “natural” replacement and in-
ference rules that I introduce. (5) Soundness and completeness: I prove that semantic and syntactic 
validity coincide. 

 

1. Introduction 
 

Here is a logic test for you. Symbolize sentences (1)-(3) below by using the provided symbols, 
and then show by natural deduction that the corresponding argument is valid: 

 

Advisor: (1) Take only courses in moral or political philosophy this term. (You have already 
satisfied all other requirements.) 
Student: (2) No courses in political philosophy can be offered this term. (The only person who 
taught such courses has retired.) 
Advisor: Then (3) take only courses in moral philosophy this term. 
(Mx: x is a course in moral philosophy offered this term; Px: x is a course in political philoso-
phy offered this term; Tx: the student takes x this term.) 
 

You may complain that this test is unfair: you were never taught how to symbolize imperative 
English sentences (like “take only courses in moral philosophy this term”) or how natural deduc-
tion applies to arguments with imperative premises or conclusions. The complaint is reasonable: 
almost no logic textbook covers these topics. This is hardly surprising, given that almost no tech-
nical literature covers these topics either.1 In this paper, I take steps to remedy this situation. I 
present sound and complete natural deduction systems for imperative logic. 

                                                           
* I am grateful to John Mackay, Michael Titelbaum, Berislav Žarnić, and especially Aviv Hoffmann and several 
anonymous reviewers for comments, and to Jeremy Avigad, David Makinson, and especially Jörg Hansen for help. 
Thanks also to Fabrizio Cariani, Hannah Clark-Younger, Kit Fine, Malcolm Forster, Casey Hart, Daniel Hausman, 
Blake Myers, David O’ Brien, Brian Skyrms, and Elliott Sober for interesting questions, and to my mother for typing 
the bulk of the paper. Material from this paper was presented at the University of Wisconsin-Madison (Department 
of Mathematics, April 2014, and Department of Philosophy, May 2014), the Madison Informal Formal Epistemology 
Meeting (April 2014), the 12th International Conference on Deontic Logic and Normative Systems (DEON 2014), 
the New York University Workshop “Imperatives and Deontic Modals” (March 2016), and the 13th International 
Conference on Deontic Logic and Normative Systems (DEON 2016). 
1 To my knowledge, only two logic textbooks cover symbolization of imperative English sentences and natural 
deduction for imperative logic: Clarke & Behling 1998 (a descendant of Clarke 1973) and Gensler 2002 (a 
descendant of Gensler 1990; see also Gensler 1996: 181-6). These textbooks, however, rely on inadequate 
definitions of validity for imperative arguments (see Vranas 2011, 2016). Relying on my definition of validity for the 
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I examine four logics. I begin (in §2) with sentential pure imperative logic (SPIL), which does 
not include quantifiers or modal operators and deals with arguments from imperative premises to 
imperative conclusions. I continue (in §3) with sentential modal imperative logic (SMIL), which 
includes modal operators and deals with arguments from declarative or imperative premises (or 
both) to declarative or imperative conclusions. I end (in §4 and §5) with quantified pure impera-
tive logic (QPIL) and quantified modal imperative logic (QMIL), which include quantifiers and 
identity (but no function symbols). For each logic, I provide an imperative formal language as 
well as replacement and inference rules that can be used to derive a conclusion from a set of 
premises. The replacement and inference rules are intended to represent “natural” patterns of rea-
soning, but their justification is not limited to intuitions about “naturalness”. The justification 
relies crucially on the result—which I prove in the Appendix—that derivability by those rules 
corresponds to a semantic definition of argument validity that I have developed at length in pre-
vious papers (Vranas 2011, 2016; see also Vranas 2008, 2010, 2013) and that I develop further 
here by introducing interpretations of imperative formal languages. I do not presuppose any fa-
miliarity with the previous papers: I repeat and often briefly motivate here the relevant previous 
results. 
 

2. Sentential pure imperative logic (SPIL) 
 

2.1. Syntax 
 

The (imperative formal) language of SPIL has the following symbols: the connectives ‘~’, ‘&’, 
‘’, ‘’, and ‘’, the punctuation symbols ‘(’ and ‘)’, the imperative operator ‘!’ (“let it be the 
case that”), and the (infinitely many) sentence letters ‘A’, ‘B’, …, ‘Z’, ‘A’, ‘B’, …, ‘Z’, ‘A’, 
‘B’, …. (One could also define languages of SPIL with different sentence letters or with only 
finitely many sentence letters, but for simplicity I define only a single language of SPIL.) The 
declarative sentences of (the language of) SPIL are all and only those finite strings of symbols 
(understood as ordered n-tuples of symbols) that either are sentence letters or can be built up 
from sentence letters by applying at least once the following formation rule: if p and q are declar-
ative sentences, then ┌~p┐, ┌(p & q)┐, ┌(p  q)┐, ┌(p  q)┐, and ┌(p  q)┐ are also declarative 
sentences. The imperative sentences of (the language of) SPIL are all and only those finite strings 
of symbols that can be built up from declarative sentences by applying the following formation 
rules (R1 must be applied at least once): 
 

(R1) If p is a declarative sentence, then ┌!p┐ is an imperative sentence. 
(R2) If i and j are imperative sentences, then ┌~i┐, ┌(i & j)┐, and ┌(i  j)┐ are also imperative 
sentences. 
(R3) If p is a declarative sentence and i is an imperative sentence, then ┌(p  i)┐, ┌(i  p)┐, 
┌(p  i)┐, and ┌(i  p)┐ are imperative sentences. 

 

A sentence (of SPIL) is either a declarative sentence or an imperative sentence. It follows from 
these definitions that a sentence is imperative exactly if it contains at least one occurrence of ‘!’ 
and is declarative exactly if it contains no occurrence of ‘!’ (so no sentence is both declarative 
and imperative). For simplicity, I usually omit outermost parentheses, writing for example ‘M  
(!P  C)’ instead of ‘(M  (!P  C))’. Here are some examples of how imperative English sen-

                                                                                                                                                                                           
special case of arguments with only imperative premises and conclusions (Vranas 2011), Hansen (2014) has 
provided sound and complete sets of inference rules for a formal language with only one imperative connective and 
without quantifiers or modal operators. 
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tences can be symbolized in (the language of) SPIL (‘P’ stands for “you procreate”, ‘M’ for “you 
marry”, and so on): 
 

Procreate: !P 
Don’t procreate: ~!P 
Marry and procreate: !M & !P 
If you marry, procreate: M  !P 
Procreate only if you marry: !P  M 
Procreate if and only if you marry: !P  M 
Don’t procreate without marrying: ~!(P & ~M) 
If you marry, then procreate only if you copulate: M  (!P  C) 
If you marry and ovulate, then copulate and procreate: (M & O)  (!C & !P) 
Neither procreate if you don’t marry nor copulate if you don’t ovulate: ~(~M  !P) & ~(~O 
 !C) 

 

One might wonder why “marry and procreate” was symbolized as ‘!M & !P’ instead of ‘!(M & 
P)’. I reply that either symbolization will do: (1) ‘!M & !P’ symbolizes “let it be the case that you 
marry, and let it be the case that you procreate”, (2) ‘!(M & P)’ symbolizes “let it be the case that 
you both marry and procreate”, (3) both English sentences are adequate paraphrases of “marry 
and procreate”,2 and (4) it turns out (see §2.2) that ‘!M & !P’ and ‘!(M & P)’ are logically equiv-
alent. Similarly, it turns out that ‘~!P’ (“let it not be the case that you procreate”) and ‘!~P’ (“let 
it be the case that you don’t procreate”) are logically equivalent.3 Note that ‘~!P’ is a negation, 
namely a sentence of the form ┌~┐ (where  is a declarative or imperative sentence), but ‘!~P’ 
is what I call an unconditionally prescriptive sentence, namely a sentence of the form ┌!p┐ 
(where p is a declarative sentence). 
 

One might wonder why I use a single set of connectives both for declarative and for imperative 
logical operations; why not use instead, for example, ‘&’ for declarative conjunction and ‘&i’ for 
imperative conjunction? I reply that the proliferation of connectives would make the notation 
cumbersome. Note that English likewise uses a single set of coordinating conjunctions both for 
declarative and for imperative (syndetic) coordination, as the two occurrences of “and” in “if you 
marry and ovulate, then copulate and procreate” illustrate. One might argue that this ambiguity is 
an undesirable feature of English and should be eliminated in a formal language. I reply that my 
use of a single set of connectives does not result in any confusion: it is always clear whether (for 
example) the ampersand is connecting declarative or imperative sentences, and semantically (see 
§2.2) the ampersand is treated differently in the two cases. 
 

                                                           
2 Changing slightly the example, one might argue that (1) “let it be the case that Pat procreates” is not an adequate 
paraphrase of (2) “Pat, procreate” because (2) is addressed to Pat but (1) is not. In reply, consider the following par-
allel argument concerning declarative sentences: (3) “I predict that Pat will procreate” is not an adequate paraphrase 
of (4) “Pat, I predict that you will procreate” because (4) is addressed to Pat but (3) is not. This argument fails: (3) is 
an adequate paraphrase of (4), in the sense that (3) and (4) normally express the same proposition. Similarly, (1) is 
an adequate paraphrase of (2), in the sense thatin my preferred terminology(1) and (2) normally express the 
same prescription (as I argue in Vranas 2008: 554 n. 14, n. 15). 
3 Cf. Parsons 2013: 84-5; contrast Clark-Younger & Girard 2013. Imperative English sentences have imperative 
negations (which are also imperative English sentences; e.g., an imperative negation of “pay” is “don’t pay”), but 
arguably also have permissive negations (which are permissive English sentences; e.g., a permissive negation of 
“pay” is “you may fail to pay”). I do not deal with permissive sentences in this paper; this is a topic for future re-
search. 
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According to the first formation rule for imperative sentences (namely R1), if p is any declarative 
sentence, then ┌!p┐ is an imperative sentence. This is as it should be, because prefixing any de-
clarative English sentence with “let it be the case that” yields an imperative English sentence. For 
example, “let it be the case that last week I died” is an imperative English sentence, even if one 
that would hardly ever be used (cf. Vranas 2008: 555 n. 17).4 By contrast, certain strings of sym-
bols of SPIL are not sentences. (1) If i is an imperative sentence, then ┌!i┐ is not a sentence. For 
example, ‘!!M’ is not a sentence. This is as it should be, because “let it be the case that let it be 
the case that you marry” is not an English sentence; more generally, prefixing an imperative Eng-
lish sentence with “let it be the case that” does not yield an English sentence.5 (2) If i and j are 
imperative sentences, then ┌(i  j)┐ and ┌(i  j)┐ are not sentences (contrast Castañeda 1975: 
113-5). For example, ‘(!M  !P)’ and ‘(!M  !P)’ are not sentences. This is as it should be, be-
cause “if marry, procreate” (or “marry only if procreate”) and “if and only if marry, procreate” (or 
“marry if and only if procreate”) are not English sentences. (3) If p is a declarative sentence and i 
is an imperative sentence, then ┌(p & i)┐, ┌(i & p)┐,┌(p  i)┐, and ┌(i  p)┐ are not sentences (cf. 
Vranas 2008: 560 n. 41; contrast Fox 2012: 885-6). For example, ‘(~M & !P)’ is not a sentence. 
This may seem undesirable, because “you are not going to marry, but nevertheless procreate” is 
an English sentence. I reply that nothing important is lost by symbolizing the two parts of the 
English sentence separately, as ‘~M’ and ‘!P’. Counting ‘(~M & !P)’ as a sentence would com-
plicate the syntax without yielding any commensurate benefit.6 

                                                           
4 In case one thinks that R1 is too permissive (because English sentences like “let it be the case that last week I died” 
and “let it be the case that the Earth revolves around the Sun” should be excluded from consideration; see, e.g., 
Rescher 1966: 34), one can (1) designate some sentence letters as agential and future-directed sentence letters, (2) 
designate those declarative sentences that contain only such sentence letters as agential and future-directed declara-
tive sentences, and (3) replace R1 with: (R1) if p is an agential and future-directed declarative sentence, then ┌!p┐ is 
an imperative sentence. 
5 One might ask: why should English be the adjudicator of a formal language? I answer that I am interested in a for-
mal language that corresponds to the way we use imperative (and declarative) sentences in English (and other natural 
languages). One might claim that (1) “let it be the case that you (will) let it be the case that you marry” is an English 
sentence, and one might take this as a reason to count ‘!!M’ as a sentence logically equivalent to ‘!M’ (cf. Chellas 
1971: 124-5). I agree that (1) is an English sentence, but this is not a reason to count ‘!!M’ as a sentence, because “let 
it be the case that”, understood impersonally, does not occur twice in (1): only the first occurrence of “let” in (1) is 
impersonal. (Note that “you (will) let it be the case that you marry”—in contrast to “let it be the case that you mar-
ry”—is a declarative English sentence.) 
6 See §4.1 (especially note 25) for further discussion of “mixed” English sentences like “you are not going to marry, 
but nevertheless procreate”. To my knowledge, the imperative operator was introduced into formal languages by 
Mally (1926; see also Hofstadter & McKinsey 1939). Two alternatives to R1 have been proposed in the literature. 
(1) Clarke and Behling (1998: 282-4; cf. Clarke 1973: 192-3) propose postfixing (instead of prefixing) sentence 
letters with ‘!’ to form imperative sentences. To allow for example ‘(A  B)!’―in addition to ‘A  B!’―to count as 
a sentence, generalize the proposal as follows: postfixing any declarative sentence (not just sentence letters) with ‘!’ 
yields an imperative sentence. But then is ‘~A!’ a negation or an unconditionally prescriptive sentence? Resolving 
the ambiguity by saying that, if  is a sentence, then ┌(~)┐ (instead of ┌~┐) is a sentence (so that ‘~A!’―i.e., 
‘(~A!)’ with the outermost parentheses omitted―is a negation but ‘(~A)!’ is an unconditionally prescriptive 
sentence) results in a proliferation of parentheses, as for example in ‘(~A)! & (~B)!’—which corresponds in my 
notation to ‘!~A & !~B’. Moreover, the proposal introduces an unwelcome asymmetry between modal (and other 
sentential) operators, which are prefixed, and the imperative operator, which is postfixed. (2) Gensler (1990: 190, 
1996: 182, 2002: 184) proposes underlining sentence letters (instead of prefixing them with ‘!’) to form imperative 
sentences. To allow for example ‘A  B’―in addition to ‘A  B’―to count as a sentence, generalize the proposal 
as follows: underlining any declarative sentence (not just sentence letters) yields an imperative sentence. This 
proposal results in a proliferation of underlining, as for example in ‘(A & (B  C))  D’―which corresponds in my 
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2.2. Semantics 
 

An interpretation of the language of SPIL is an ordered pair whose first coordinate is a set of 
sentence letters (namely—see below—those sentence letters that are true on the interpretation) 
and whose second coordinate is a favoring relation (namely—see below—a three-place relation 
on declarative sentences that satisfies certain conditions). Declarative sentences are true or false 
on interpretations, and imperative sentences are satisfied, violated, or avoided on interpretations. 
Specifically, for any declarative sentences p and q, any imperative sentences i and j, and any in-
terpretation m: 
 

Truth and falsity of a declarative sentence on an interpretation 
(C1) A sentence letter is true on m iff (i.e., exactly if) it is a member of the first coordinate of m. 
(C2) ┌~p┐ is true on m iff p is not true on m. 
(C3) ┌p & q┐ is true on m iff both p and q are true on m. 
(C4) ┌p  q┐ is true on m iff ┌~(~p & ~q)┐ is true on m. 
(C5) ┌p  q┐ is true on m iff ┌~p  q┐ is true on m. 
(C6) ┌p  q┐ is true on m iff ┌(p  q) & (q  p)┐ is true on m. 
(C7) p is false on m iff p is not true on m. 
 

Satisfaction, violation, and avoidance of an imperative sentence on an interpretation 
(C8) ┌!p┐ is (a) satisfied on m iff p is true on m, and is (b) violated on m iff p is false on m. 
(Informally: “procreate” is satisfied iff you procreate, and is violated iff you do not procreate.) 
(C9) ┌~i┐ is (a) satisfied on m iff i is violated on m, and is (b) violated on m iff i is satisfied on 
m. (Informally: “don’t procreate” is satisfied iff you do not procreate, namely iff “procreate” is 
violated, and is violated iff you procreate, namely iff “procreate” is satisfied.) 
(C10) ┌i & j┐ is (a) satisfied on m iff either (i) both i and j are satisfied on m or (ii) one of i 
and j is satisfied on m and the other one is neither satisfied nor violated on m, and is (b) vio-
lated on m iff at least one of i and j is violated on m. (Note that ┌i & j┐ can be satisfied on m 
even if not both i and j are satisfied on m (disjunct (ii) in (a)). Informally: “if you marry, pro-
create, and if you don’t marry, procreate” is equivalent to “procreate (regardless of whether 
you marry)”, so it is satisfied if you procreate without marrying and thus if “if you marry, pro-
create” is not satisfied (see C12 below).) 
(C11) ┌i  j┐ is satisfied (or violated) on m iff ┌~(~i & ~j)┐ is satisfied (or violated) on m. (In-
formally: “marry or procreate” is equivalent to the negation of “neither marry nor procreate”.) 
(C12) ┌p  i┐ is (a) satisfied on m iff both p is true on m and i is satisfied on m, and is (b) 
violated on m iff both p is true on m and i is violated on m. (Informally: “if you marry, procre-
ate” is satisfied iff you both marry and procreate, and is violated iff you marry without procre-
ating.) 
(C13) ┌i  p┐ is satisfied (or violated) on m iff ┌~p  ~i┐ is satisfied (or violated) on m. (In-
formally: “procreate only if you marry” is equivalent to “if you don’t marry, don’t procreate”.) 
(C14) ┌p  i┐ is satisfied (or violated) on m iff ┌(p  i) & (i  p)┐ is satisfied (or violated) 
on m and also iff ┌i  p┐ is satisfied (or violated) on m. (Informally: “if and only if you mar-
ry, procreate” is equivalent to “if you marry, procreate, and procreate only if you marry” and is 
also equivalent to “procreate if and only if you marry”.) 

                                                                                                                                                                                           
notation to ‘!(A & (B  C))  D’. Moreover, the proposal results in a proliferation of symbols: if sentences are 
ordered n-tuples of symbols and ‘A  B’ is a sentence, then ‘A’, ‘’, and ‘B’ are symbols. 
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(C15) i is avoided on m iff i is neither satisfied nor violated on m. (Informally: “procreate” is 
avoided iff you neither procreate nor do not procreate, namely never, and “if you marry, pro-
create” is avoided iff you neither both marry and procreate nor marry without procreating, 
namely iff you do not marry.) 

 

See Vranas 2008: 532-45 for a detailed defense of C8-C15. A tautology is either a declarative 
sentence that is true on every interpretation (a declarative tautology; e.g., ‘M  ~M’) or an im-
perative sentence that is satisfied on every interpretation (an imperative tautology; e.g., ‘!(M  
~M)’). A contradiction is either a declarative sentence that is false on every interpretation (a de-
clarative contradiction; e.g., ‘M & ~M’) or an imperative sentence that is violated on every inter-
pretation (an imperative contradiction; e.g., ‘!(M & ~M)’). Sentences  and  are logically 
equivalent only if either they are both declarative or they are both imperative. Declarative sen-
tences p and q are logically equivalent (in other words, p is logically equivalent to q) exactly if, 
for any interpretation m, p and q are either both true on m or both false on m (equivalently: p is 
true on m exactly if q is true on m). Imperative sentences i and j are logically equivalent (in other 
words, i is logically equivalent to j) exactly if, for any interpretation m, i and j are either both sat-
isfied on m or both violated on m or both avoided on m (equivalently: i is satisfied on m exactly if 
j is satisfied on m, and i is violated on m exactly if j is violated on m). Now it can be seen that, as 
stated in §2.1, ‘!M & !P’ and ‘!(M & P)’ are logically equivalent: for any interpretation m, by 
C10 ‘!M & !P’ is satisfied on m exactly if both ‘!M’ and ‘!P’ are satisfied on m, by C8 the latter 
holds exactly if both ‘M’ and ‘P’ are true on m, by C3 the latter holds exactly if ‘M & P’ is true 
on m, and by C8 the latter holds exactly if ‘!(M & P)’ is satisfied on m (and similarly for viola-
tion on m). As I prove in the Appendix, for any imperative sentence i, there are declarative sen-
tences p and q such that i and ┌p  !q┐ are logically equivalent. 
 

Recall that the second coordinate of an interpretation is a favoring relation. Formally, a favoring 
relation is a three-place relation on declarative sentences (i.e., a set of ordered triples of declara-
tive sentences) that satisfies two conditions. First, the intensionality condition: for any declara-
tive sentences p, q, and r, and any declarative sentences p, q, and r logically equivalent to p, q, 
and r respectively, the ordered triple <p, q, r> is in (i.e., is a member of) the relation exactly if 
<p, q, r> is. Second, the asymmetry condition: for any declarative sentences p, q, and r, <p, q, 
r> and <p, r, q> are not both in the relation. Say that p favors q over r on an interpretation exact-
ly if <p, q, r> is in the favoring relation (which is the second coordinate) of the interpretation. So, 
to say that the favoring relation of any interpretation satisfies the asymmetry condition is to say 
that, for any declarative sentences p, q, and r, p does not favor both q over r and r over q on any 
interpretation. Informally, a favoring relation corresponds to comparative reasons (e.g., reasons 
for you to marry Hugh rather than Hugo), so the asymmetry condition corresponds to the claim 
that nothing can be a reason both for b rather than d and for d rather than b. In this paper, I do not 
need to engage with metaphysical debates concerning the existence and the nature of reasons for 
action (see, e.g., Skorupski 2010): the above formal definition of a favoring relation suffices for 
my purposes. The point of having a favoring relation as a coordinate of an interpretation should 
become clear when I define semantic validity below.7 
                                                           
7 There is a circularity problem related to the intensionality condition: I formulated the condition in terms of logical 
equivalence, which I defined in terms of (truth on) interpretations, so it is circular to define favoring relations―and 
thus interpretations―in terms of the condition. This problem can circumvented by complicating the semantics as 
follows. Define a subinterpretation (of the language of SPIL) as a set of sentence letters. Say that a sentence letter is 
true on a subinterpretation exactly if it is a member of the subinterpretation. Use C2-C15 to define truth, falsity, sat-
isfaction, violation, and avoidance on m, where m is now a subinterpretation. Say that p and q are logically equiva-
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2.3. Semantic validity 
 

An argument (of the language of SPIL) is an ordered pair whose first coordinate is a non-empty 
finite set of sentences (the premises of the argument) and whose second coordinate is a sentence 
(the conclusion of the argument). A pure declarative argument is an argument whose premises 
and conclusion are all declarative sentences, and a pure imperative argument is an argument 
whose premises and conclusion are all imperative sentences. A pure declarative argument is se-
mantically valid (in SPIL)—i.e., its premises semantically entail its conclusion; in other words, 
its conclusion semantically follows from (the set of) its premises—exactly if its conclusion is true 
on every interpretation on which its premises are all true. (This is equivalent to the definition of 
semantic validity in classical sentential logic.) Building on previous work, I similarly say that 
(roughly) a pure imperative argument is semantically valid (in SPIL) when, on every interpreta-
tion, its conclusion is “supported” by everything that supports its premises. Also building on pre-
vious work, I distinguish strong from weak support—and, correspondingly, strong from weak 
semantic validity for pure imperative arguments—as follows: 
 

DEFINITION 1. For any declarative sentence p, any imperative sentence i, and any interpretation m: 
(1) p strongly supports i on m exactly if (a) p is true on m, (b) i is not a contradiction, and (c) 
for any declarative sentences q and r that are not both contradictions, if (i) i is satisfied on 
every interpretation on which q is true and (ii) i is violated on every interpretation on which r 
is true, then p favors q over r on m; 
(2) p weakly supports i on m exactly if p strongly supports on m some imperative sentence j 
such that (a) i is satisfied on every interpretation on which j is satisfied and (b) i is avoided on 
all and only those interpretations on which j is avoided. 

 

DEFINITION 2. A pure imperative argument is (1) strongly semantically valid (in SPIL) exactly 
if, for any interpretation m, every declarative sentence that strongly supports on m every con-
junction8 of all premises of the argument also strongly supports on m the conclusion of the 
argument, and is (2) weakly semantically valid (in SPIL) exactly if, for any interpretation m, 
every declarative sentence that weakly supports on m every conjunction of all premises of the 
argument also weakly supports on m the conclusion of the argument. 

 

                                                                                                                                                                                           
lent exactly if they are either both true or both false on every subinterpretation. Now the intensionality condition can 
be formulated without appealing to interpretations, and an interpretation can be defined without circularity as an or-
dered pair whose first coordinate is a subinterpretation and whose second coordinate is a three-place relation on de-
clarative sentences that satisfies the intensionality and asymmetry conditions. Finally, define truth (satisfaction, etc.) 
on an interpretation as truth (satisfaction, etc.) on the subinterpretation (which is the first coordinate) of the interpre-
tation. For the sake of simplicity, I ignore these complications in the text. 
8 Given n ( 1) sentences that are either all declarative or all imperative, a conjunction of all of them is any sentence 
that can be built up from them by using each of them exactly once and by applying n - 1 times the following rule: if  
and  are (both declarative or both imperative) sentences, then ┌( & )┐ is a sentence. See Vranas 2011: 396-8 for 
an explanation of why I define semantic validity in terms of supporting conjunctions of all premises and not in terms 
of supporting every premise. Because sentences are finite strings of symbols, I do not define conjunctions of infinite-
ly many sentences (contrast Vranas 2016: 1706 n. 1); this is why I defined an argument as having finitely many 
premises. If one defines similarly an argument* as having finitely or infinitely many premises, then one can say that 
an argument* g with infinitely many premises is weakly semantically valid exactly if so is (according to Definition 2) 
some argument whose (finitely many) premises are also premises of g and whose conclusion is the same as the con-
clusion of g (and similarly for weak syntactic validity; see §2.4). Compactness holds then by definition. (A similar 
move does not work for strong semantic validity, which turns out to be non-monotonic.) 
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Given the intensionality condition (§2.2) and the logical equivalence of any two conjunctions of 
all premises of an argument, supporting (strongly or weakly, on an interpretation) some conjunc-
tion of all premises of an argument amounts to supporting every conjunction of all premises of 
the argument. It follows that a pure imperative argument is strongly semantically valid exactly if 
some conjunction (equivalently: every conjunction) of its premises semantically strongly entails 
its conclusion, and similarly for weak semantic entailment. It also follows from the above defini-
tions that (1) every declarative sentence that strongly supports an imperative sentence on an in-
terpretation also weakly supports the imperative sentence on the interpretation, (2) every pure 
imperative argument that is strongly semantically valid is also weakly semantically valid, and (3) 
for any imperative sentences i and j, the pure imperative arguments from i to j and from j to i are 
both weakly semantically valid exactly if they are both strongly semantically valid and also ex-
actly if i and j are logically equivalent. ((1) follows from the second part of Definition 1; see the 
Appendix on how to prove (2) and (3).) Informally, the distinction between strong and weak se-
mantic validity captures a conflict of intuitions about whether, for example, “sign the letter” en-
tails “sign or burn the letter”: one can show that ‘!S’ weakly but not strongly semantically entails 
‘!(S  B)’. 
 

Directly defending the above definitions lies beyond the scope of this paper: I have extensively 
defended in previous work (Vranas 2011, 2016) an account of validity on which the definitions 
are based,9 and I have compared that account to alternative accounts in the literature (e.g., Char-
low 2014; Kaufmann 2012; Parsons 2013). My main goal here is to develop a syntactic account 
of validity equivalent to the semantic account provided by the above definitions. I turn next to the 
syntactic account. 
 

2.4. Syntactic validity 
 

A derivation (in SPIL) of an imperative sentence i from (the members of) a non-empty set  of 
imperative sentences is a finite sequence of imperative sentences (called the lines of the deriva-
tion) such that (1) the last line of the sequence is i and (2) each line of the sequence either is (a 
member or) a conjunction of members of  or can be obtained from previous lines by applying 
once a replacement rule from Table 1 (§2.4.1) or a pure imperative inference rule from Table 2 or 
Table 3 (§2.4.2). A pure imperative argument is weakly syntactically valid (in SPIL) exactly if 
there is a derivation of its conclusion from its premises (i.e., the conclusion can be derived, or is 
derivable, from the premises). I define strong syntactic validity later on (in §2.4.3). 
 

2.4.1. Replacement rules 

A subsentence of a given sentence is any string of consecutive symbols of the given sentence that 
is itself a sentence. For example, the subsentences of ‘M  !~M’ are ‘M’, ‘~M’, ‘!~M’, and ‘M 
 !~M’. (The first three are proper subsentences of ‘M  !~M’: they are not identical to ‘M 

                                                           
9 I say that the definitions are “based” on my previously defended account of validity because that account is about 
“arguments” whose premises and conclusions are not sentences of a formal language, but are instead what imperative 
and declarative sentences of natural languages typically express, namely prescriptions (i.e., commands, requests, 
instructions, suggestions, etc.) and propositions respectively. Deviating slightly from previous work in order to keep 
my definition of an interpretation (§2.2) simple, I formulated Definition 1 so that it has as consequences two claims 
corresponding to what in previous work I understood as assumptions about favoring, namely the claims that (1) no 
declarative sentence strongly supports an imperative contradiction on any interpretation (cf. Assumption 1 in Vranas 
2011: 433) and (2) every declarative sentence that is true on an interpretation strongly supports on that interpretation 
any semantically empty imperative sentence (cf. Vranas 2016: 1708 n. 6), namely any imperative sentence that is 
avoided on every interpretation (e.g., ‘(M & ~M)  !P’). 
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 !~M’. There are two occurrences of the subsentence ‘M’ within ‘M  !~M’.) All replacement 
rules are based on the result that two sentences are logically equivalent if they differ only in sub-
sentences that are logically equivalent, and this result is based on the following lemma (which I 
prove in the Appendix): 
 

REPLACEMENT LEMMA. For any sentences , , and  such that  is a subsentence of  and 
 is logically equivalent to ,  is logically equivalent to any sentence that results from re-
placing in  at least one occurrence of  with . 

 

For example, because ‘!~C’ is logically equivalent to ‘~!C’, ‘O  !~C’ is logically equivalent to 
‘O  ~!C’. In a derivation, one can obtain ‘O  ~!C’ from ‘O  !~C’ (and vice versa: one can 
obtain ‘O  !~C’ from ‘O  ~!C’) by applying once a replacement rule based on the logical 
equivalence between ‘!~C’ and ‘~!C’—or on the general logical equivalence (i.e., on all logical 
equivalences) between ┌!~p┐ and ┌~!p┐ (for all declarative sentences p).10 Table 1 lists the gen-
eral logical equivalences on which the replacement rules that may be applied in derivations are 
based, as well as the names of the corresponding replacement rules and the abbreviations of those 
names. (I use the metalinguistic symbol ‘’ for “is logically equivalent to”, and for simplicity I 
omit corner quotes in the table.) To limit the proliferation of rules, each replacement rule except 
for the last nine rules in the table is based on at least two general logical equivalences: at least 
one of them is between declarative sentences (and is familiar from classical sentential logic), and 
at least one of them is between imperative sentences. In the table, and in what follows, p, q, r, p, 
and q are any declarative sentences, and i, j, k, and i are any imperative sentences. 
 

One can see from Table 1 that many general declarative logical equivalences (i.e., logical equiva-
lences between declarative sentences) have straightforward imperative analogs. For example, de 
Morgan’s laws and contraposition (i.e., transposition) hold for imperative sentences. It is some-
times claimed in the literature, however, that imperative contraposition fails because, for exam-
ple, “if you killed, confess” is not equivalent to “if you don’t confess, let it not be the case that 
you killed”. I reply that this is not really an instance of contraposition: the contrapositive of ┌  
┐ is ┌~  ~┐, so the contrapositive of ‘K  !C’ (“if you killed, confess”) is ‘~!C  ~K’ 
(“don’t confess only if you didn’t kill”; cf. Castañeda 1977: 780; Fox 2012: 892), not ‘~C  
~!K’ (“if you don’t confess, let it not be the case that you killed”). This is an example of how 
symbolization in an imperative formal language clears up a not uncommon confusion in the liter-
ature.11 
 
 
                                                           
10 In general, a replacement rule based on the logical equivalence between  and  specifies that, given any sen-
tence  that has  as a subsentence, one can obtain from  in a derivation any sentence that results from replacing in 
 at least one occurrence of  with  (and vice versa, interchanging  with ). Even more generally, a replacement 
rule based on multiple logical equivalences (as all replacement rules in Table 1 are, since they are based on general 
logical equivalences), say on the logical equivalences between  and  and between  and , specifies that, given 
any sentence  that has  or  (or both) as a subsentence, one can obtain from  in a derivation any sentence that 
results from replacing in  either at least one occurrence of  with  or at least one occurrence of  with  (or both, 
provided that the occurrences of  and of  do not overlap)—and vice versa, interchanging  with  or  with  
(or both). For example, by applying Negated Conditional (see Table 1) once, from ‘(M & ~P)  ~(O  !C)’ one 
can obtain ‘~(M  P)  (O  ~!C)’. 
11 I have been myself guilty of that confusion: in light of the above considerations, I renounce my definition of a 
contrapositive in Vranas 2011: 404 n. 45. See Vranas 2011: 404-5 n. 46 for references to imperative contraposition 
in the literature. 
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Name of rule and abbreviation Declarative logical equivalences Imperative logical equivalences 
Double Negation DN ~~p  p ~~i  i 
Idempotence IP p & p  p 

p  p  p 
i & i  i 
i  i  i 

Commutativity CO p & q  q & p 
p  q  q  p 
p  q  q  p 

i & j  j & i 
i  j  j  i 
p  i  i  p 

Associativity AS p & (q & r)  (p & q) & r 
p  (q  r)  (p  q)  r 
p  (q  r)  (p  q)  r 

i & (j & k)  (i & j) & k 
i  (j  k)  (i  j)  k 
p  (q  i)  (p  q)  i 
p  (i  q)  (p  i)  q 

Distributivity DI p  (q & q)  (p  q) & (p  q) 
p & (q  q)  (p & q)  (p & q) 
p  (q & q)  (p  q) & (p  q) 
p  (q  q)  (p  q)  (p  q) 
(p  p)  q  (p  q) & (p  q) 
(p & p)  q  (p  q)  (p  q) 

 
 
p  (i & i)  (p  i) & (p  i) 
p  (i  i)  (p  i)  (p  i) 
(p  p)  i  (p  i) & (p  i) 
(p  p)  i  (p  i)  (p  i) 

Transposition TR p q  ~q  ~p p  i  ~i  ~p 
i  p  ~p  ~i 

Negated Conditional NC ~(p  q)  p & ~q ~(p  i)  p  ~i 
~(i  p)  ~i  p 

Material Equivalence ME p  q  (p  q) & (q  p) 
p  q  (p & q)  (~p & ~q) 

p  i  (p  i) & (i  p) 
p  i  (p i)  (i  p) 

Negated Biconditional NB ~(p  q)  ~p  q 
~(p  q)  p  ~q 

~(p  i)  ~p  i 
~(p  i)  p  ~i 

De Morgan DM ~(p & q)  ~p  ~q 
~(p  q)  ~p & ~q 

~(i & j)  ~i  ~j 
~(i  j)  ~i & ~j 

Exportation EX p  (q  r)  (p & q)  r p  (q  i)  (p & q)  i 
Absorption AB p  q  p  (p & q) p  !q  p  !(p & q) 
Contradictory Conjunct CC (p & ~p) & q  p & ~p !(p & ~p) & i  !(p & ~p) 
Contradictory Disjunct CD (p & ~p)  q  q !(p & ~p)  !q  !q 
Tautologous Conjunct TC (p  ~p) & q  q !(p  ~p) & !q  !q 
Tautologous Disjunct TD (p  ~p)  q  p  ~p !(p  ~p)  i  !(p  ~p) 
Tautologous Antecedent TA (p  ~p)  q  q (p  ~p)  i  i 
Material Implication MI p  q  ~ p  q  
Unconditional Negation UN  ~!p  !~p 
Unconditional Conjunction UC  !p & !q  !(p & q) 
Unconditional Disjunction UD  !p  !q  !(p  q) 
Unconditional Biconditional UB  p  !q  !(p  q) 
Mixed Conjunction MC  !p & (q  !r)  !(p & (q  r)) 
Mixed Disjunction MD  !p  (q  !r)  !(p  (q & r)) 
Imperative Conjunction IC  (p  !q) & (p  !q)  

(p  p)  !((p  q) & (p  q)) 
Imperative Disjunction ID  (p  !q)  (p  !q )  

(p  p)  !((p & q)  (p & q)) 
Table 1. Replacement rules. 
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Table 1 indicates that some general declarative logical equivalences have no—or no straightfor-
ward—imperative analog. For example (concerning Distributivity), imperative conjunction is not 
distributive over imperative disjunction, and vice versa.12 For another example (concerning Ma-
terial Implication), there is no general logical equivalence between imperative conditionals and 
imperative disjunctions analogous to the general declarative logical equivalence between ┌p  
q┐ and ┌~p  q┐. As a consequence (concerning Negated Conditional), there is no general logical 
equivalence between negations of imperative conditionals and imperative conjunctions analogous 
to the general declarative logical equivalence between ┌~(p  q)┐ and ┌p & ~q┐. On the contra-
ry, negating an imperative conditional amounts to negating its imperative antecedent or conse-
quent; informally, “if you marry, don’t procreate” negates “if you marry, procreate”.13 
 

A replacement derivation (in SPIL) is a derivation in which each line other than the first can be 
obtained from the previous line by applying once a replacement rule from Table 1. As I prove in 
the Appendix, the set of replacement rules in Table 1 is complete in the following sense: any log-
ically equivalent sentences  and  are replacement interderivable (i.e., there is a replacement 
derivation of ψ from φ and there is a replacement derivation of φ from ψ). Given this result, and 
given that any imperative tautology is logically equivalent to, for example, ‘!(M  M)’, the fact 
that I defined derivations only from non-empty sets of sentences does not prevent one from prov-
ing syntactically that a sentence is an imperative tautology: there is no derivation of an impera-
tive tautology (or of any sentence) from the empty set, but there is a replacement derivation of an 
imperative tautology from, for example, ‘!(M  M)’. 
 

For the completeness result, not all rules in Table 1 are needed. For example, one can show that 
Unconditional Conjunction, Unconditional Disjunction, Mixed Conjunction, and Mixed Disjunc-
tion are redundant given Imperative Conjunction, Imperative Disjunction, Tautologous Conjunct, 
Tautologous Disjunct, and Tautologous Antecedent. Nevertheless, the redundant rules are useful: 
they make shorter derivations available. For example, by applying Mixed Conjunction one can 
immediately derive ‘!(M & (O  C))’ from ‘!M & (O  !C)’, but every derivation of the former 
sentence from the latter one in which Mixed Conjunction may not be applied has at least six 
lines. Here is an example of a shortest such derivation (and also an example of a replacement 
derivation): 
 

1. !M & (O  !C)      Premise 
2. ((M  ~M)  !M) & (O  !C)    1 Tautologous Antecedent 
3. ((M  ~M)  O)  !(((M  ~M)  M) & (O  C)) 2 Imperative Conjunction 

                                                           
12 For example, ‘!A & (!B  (C  !D))’ is not logically equivalent to ‘(!A & !B)  (!A & (C  !D))’: by applying 
DI, MC, MD, UC, and UD (not in that order), one can show that the former sentence is logically equivalent to ‘!(A & 
(B  (C & D)))’ but the latter sentence is logically equivalent to ‘!(A & (B  (C  D)))’. A special case of 
distributivity can be shown to hold, however: ┌i  (!q & !q)┐ is logically equivalent to ┌(i  !q) & (i  !q)┐, and ┌i 
& (!q  !q)┐ is logically equivalent to ┌(i & !q)  (i & !q)┐. 
13 (1) Note that ‘(M  !P) & (M  !P)’, which is logically equivalent to ‘M  !(P & P)’ (as one can show by 
applying NC, DI, UN, and UC), is not an imperative contradiction, namely an imperative sentence that is violated on 
every interpretation (cf. Charlow 2014: 628), but is instead what may be called an imperative conditional contradic-
tion, namely an imperative sentence that is non-satisfied (i.e., violated or avoided) on every interpretation. (One may 
similarly define an imperative conditional tautology as an imperative sentence that is non-violated on every interpre-
tation; e.g., ‘M  !(P   P)’.) (2) For another disanalogy between declarative and imperative logical equivalences, 
note that the conjunctions and the disjunctions of certain imperative conditionals are logically equivalent; for exam-
ple, compare the last two general imperative logical equivalences on which Distributivity is based, or those on which 
Material Equivalence is based. See Vranas 2008: 541-2 for discussion. 
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4. (M  ~M)  !(((M  ~M)  M) & (O  C))  3 Tautologous Disjunct 
5. !(((M  ~M)  M) & (O  C))   4 Tautologous Antecedent 
6. !(M & (O  C))      5 Tautologous Antecedent 

 

2.4.2. Inference rules 
 

Table 2 lists eight pure imperative inference rules that may be applied in derivations. All but the 
first two rules are straightforward analogs of familiar pure declarative inference rules,14 but the 
first two rules deserve elaboration. According to the first part of Strengthening the Antecedent 
(SA), from an imperative sentence i one can obtain in a derivation ┌p  i┐ for any declarative 
sentence p. For example, from ‘O  !C’ one can obtain ‘M  (O  !C)’ (which is logically 
equivalent to ‘(M & O)  !C’; so the antecedent of ‘O  !C’, namely ‘O’, is “strengthened” to 
‘M & O’). The first part of SA is redundant given Tautologous Antecedent, Distributivity, and 
Imperative Conjunction Elimination. To see this, here is a derivation of ‘M  (O  !C)’ from 
‘O  !C’: 
 

1. O  !C      Premise 
2. (M  ~M)  (O  !C)    1 Tautologous Antecedent 
3. (M  (O  !C)) & (~M  (O  !C))  2 Distributivity 
4. M  (O  !C)     3 Imperative Conjunction Elimination 

 

This kind of derivation can be used to defend the first part of SA; see Vranas 2011: 400-2 for a 
detailed defense. Now according to the second part of SA, if p (semantically) entails p (§2.3), 
then from ┌p  i┐ one can obtain in a derivation ┌p  i┐. For example, since ‘M  (M  O)’ 
entails ‘O’ (as one can check by using a truth table or a sound and complete natural deduction 
system for classical sentential logic), from ‘O  !C’ one can obtain ‘(M  (M  O))  !C’. 
The first part of SA is redundant given the second part and Tautologous Antecedent: from i one 
can obtain ┌(p  ~p)  i┐ by Tautologous Antecedent, and from this one can obtain ┌p  i┐ by 
the second part of SA (because p entails ┌p  ~p┐). Conversely, one can show that the second 
part of SA is redundant given the first part and the replacement rules in Table 1.15 So both parts 
of SA are redundant given Imperative Conjunction Elimination and the replacement rules. De-

                                                           
14 If an inference rule has multiple parts (as SA, WC, ICE, and IDS in Table 2 do), then to apply the rule once is to 
apply a part of the rule once. If (a part of) an inference rule has multiple premises (as ICI, IMP, IMT, and IDS in 
Table 2 do), then the order of the premises does not matter for the purpose of applying the rule, and to obtain its 
conclusion in a derivation (by applying the rule once) its premises must be any distinct previous lines of the deriva-
tion (for example, ‘!A & !A’ can be obtained by ICI from two previous lines that are both ‘!A’ but not from a single 
previous line that is ‘!A’). Note the absence of “Imperative Disjunctive Addition” from Table 2: from i one cannot 
obtain ┌i  j┐. For example, ‘M  !P’ does not weakly semantically entail ‘(M  !P)  (~M  !P)’ (which, by Dis-
tributivity and Tautologous Antecedent, is replacement interderivable with ‘!P’). (Informally: “if you marry, procre-
ate” does not entail “if you marry, procreate, or if you don’t marry, procreate”—which is equivalent to “procreate”.) 
Finally, concerning IMP and IMT, from ┌i  p┐ and i one cannot obtain ┌!p┐, and from ┌p  i┐ and ┌~i┐ one cannot 
obtain ┌~!p┐. For example (concerning IMT), ‘M  (C  !P)’ and ~(C  !P)’ (which are logically equivalent to 
‘(M & C)  !P’ and ‘C  ~!P’ respectively) do not weakly semantically entail ‘~!M’. (Informally: “if you marry 
and copulate, procreate” and “if you copulate, don’t procreate” do not entail “don’t marry”.) 
15 Indeed: from ┌p  i┐ one can obtain ┌p  (p  i)┐ by the first part of SA, and from this one can obtain ┌(p & 
p)  i┐ by Exportation. But if p entails p, then ┌p & p┐ is logically equivalent to p, and (by the Replacement 
Lemma) ┌(p & p)  i┐ is logically equivalent to ┌p  i┐. Then, given the completeness of the set of replacement 
rules in Table 1, by applying those rules one can derive ┌p  i┐ from ┌(p & p)  i┐. 
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spite being redundant, however, SA is useful because by applying it one can immediately derive, 
for example, ‘(O & C)  !P’ from ‘!P’ and from ‘(O  C)  !P’. 
 

According to the first part of Weakening the Consequent (WC), if q (semantically) entails q, 
then from ┌!q┐ one can obtain in a derivation ┌!q┐. For example: 
 

1. !(M  (M  O))   Premise 
2. !O     1 Weakening the Consequent 

 

Clearly, to apply WC in the above example one must first check that ‘M  (M  O)’ entails 
‘O’. Instead of checking this separately, it might be more perspicuous to check it by including in 
the derivation extra lines, namely declarative sentences corresponding to deriving ‘O’ from ‘M 
 (M  O)’ by applying pure declarative inference (and declarative replacement) rules. (Similar 
remarks apply to the second parts of SA and of WC.) I have no problem with this alternative ap-
proach, but in this section I defined a derivation as a sequence of only imperative sentences 
mainly to keep things simple. 
 

Name of rule and abbreviation  Rule  
Strengthening the Antecedent SA i 

____________ 
p  i 

If p entails p: 
p  i 
_____________ 
p  i 

Weakening the Consequent WC If q entails q: 
!q 
_______ 
!q 

If q entails q: 
p  !q 
_________________ 
p  !q 

Imperative Conjunction Introduction ICI i 
j 
__________ 
i & j 

 

Imperative Conjunction Elimination ICE i & j 
__________ 
i 

i & j 
__________ 
j 

Imperative Modus Ponens IMP p  i 
!p 
_____________ 
i 

 

Imperative Modus Tollens IMT i  p 
~!p 
_____________ 
~i 

 

Imperative Disjunctive Syllogism IDS i  j 
~i 
__________ 
j 

i  j 
~j 
__________ 
i 

Ex Contradictione Quodlibet ECQ !(p & ~p) 
_____________________ 
i 

 

Table 2. Pure imperative inference rules. 
 

Both parts of WC are redundant given Imperative Conjunction Elimination and the replacement 
rules in Table 1. Here is why, concerning the second part of WC. If q entails q, then ┌q & q┐ is 
logically equivalent to q, and then (by the Replacement Lemma) ┌p  !(q & q)┐ is logically 
equivalent to ┌p  !q┐. Then, given the completeness of the set of replacement rules in Table 1, 
by applying those rules one can derive ┌p  !(q & q)┐ from ┌p  !q┐. Finally, from ┌p  !(q 
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& q)┐ one can derive ┌(p  !q) & (p  !q)┐ by Unconditional Conjunction and Distributivity, 
and from this one can obtain ┌p  !q┐ by Imperative Conjunction Elimination. Similar remarks 
apply to the first part of WC (which, as one can show, is also redundant given the second part of 
WC and Tautologous Antecedent). Despite being redundant, however, WC (just like SA) is use-
ful because it makes shorter derivations available. 
 

Pure declarative inference rules Pure imperative inference rules 
Name/abbreviation Rule Name/abbreviation Rule 
Conjunction 
Introduction 

CI p 
q 
_____________ 
p & q 

Unconditional 
Conjunction 
Introduction 

UCI !p 
!q 
_________________ 
!(p & q) 

!p 
!q 
_________________ 
!p & !q 

  

Conjunction 
Elimination 

CE p & q 
____________ 

p 

p & q 
____________ 

q 

Unconditional 
Conjunction 
Ellimination 

UCE !(p & q) 
_________________ 
!p 

!p & !q 
_________________ 
!p 

!(p & q) 
_________________ 
!q 

!p & !q 
_________________ 
!q 

Modus 
Ponens 

MP p  q 
p 
_____________ 
q 

Unconditional 
Modus 
Ponens 

UMP !(p  q) 
!p 
__________________ 
!q 

!p  q 
!p 
________________ 
!q 

p  !q 
!p 
________________ 
!q 

 

Modus 
Tollens 

MT p  q 
~q 
_____________ 
~p 

Unconditional 
Modus 
Tollens 

UMT !(p  q) 
!~q 
__________________ 
!~p 

!p  q 
!~q 
_________________ 
!~p 

p  !q 
!~q 
_________________ 
!~p 

!(p  q) 
~!q 
_________________ 
!~p    etc. 

Disjunctive 
Syllogism 

DS p  q 
~p 
___________ 
q 

p  q 
~q 
___________ 
p 

Unconditional 
Disjunctive 
Syllogism 

UDS !(p  q) 
!~p 
________________ 
!q 

!p  !q 
!~p 
________________ 
!q 

!(p  q) 
~!p 
________________ 
!q 

!p  !q 
~!p 
________________ 
!q     etc. 

Disjunctive 
Addition 

DA  p 
___________ 

p  q 

p 
___________ 

q  p 

Unconditional 
Disjunctive 
Addition 

UDA !p 
________________ 
!(p  q) 

!p 
________________ 
!p  !q 

!p 
________________ 
!(q  p) 

!p 
________________ 
!q  !p 

Disjunctive 
Dilemma 

DD p  q 
r  t 
p  r 
___________ 
q  t 

Unconditional 
Disjunctive 
Dilemma 

UDD !(p  q) 
!(r  t) 
!(p  r) 
________________ 

!(q  t) 

!p  q 
!(r  t) 
!(p  r) 
________________ 

!(q  t) 

p  !q 
!(r  t) 
!(p  r) 
________________ 

!(q  t) 

!(p  q) 
!r  t 
!(p  r) 
________________ 

!(q  t) etc. 
Table 3. Pure declarative inference rules and their unconditional imperative counterparts. 

 

As I prove in the Appendix, the set consisting of the replacement rules in Table 1 and of the in-
ference rules in Table 2 is complete: any imperative sentence that weakly semantically follows 
from given imperative sentences can be derived from those sentences by applying only replace-
ment rules from Table 1 and only inference rules from Table 2. (This differs from the sense in 
which, as I said in §2.4.1, the set of replacement rules in Table 1 is complete: that sense of com-
pleteness is about logically equivalent sentences, but the present sense of completeness is about 
weakly semantically valid pure imperative arguments.) For the purpose of making shorter deriva-
tions available, however, the pure imperative inference rules in Table 3 are useful (despite being 
redundant).16 The parts of those pure imperative inference rules are what I call unconditional 
imperative counterparts of the pure declarative inference rules in Table 3. Take any (or any part) 

                                                           
16 Some parts of the pure imperative inference rules in Table 3 do not make shorter derivations available. For exam-
ple, to immediately derive ┌!p & !q┐ from ┌!p┐ and ┌!q┐ one does not need to apply the second part of UCI: one can 
apply ICI instead. By contrast, other parts of the pure imperative inference rules in Table 3 do make shorter deriva-
tions available. For example, ┌!(p & q)┐ can be derived from ┌!p┐ and ┌!q┐ either immediately, by the first part of 
UCI, or in two steps, by applying first ICI (to obtain ┌!p & !q┐) and then UC. 
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of those pure declarative inference rules and, treating p, q, r, and t as if they had no proper sub-
sentences, prefix any combination of subsentences of each premise and of the conclusion of the 
rule with ‘!’ so that the resulting premises and conclusion are all imperative sentences; what re-
sults is an unconditional imperative counterpart of the pure declarative inference rule. For exam-
ple, take Modus Ponens. There are three ways to prefix subsentences of ┌p  q┐ (i.e., the first 
premise) with ‘!’ so as to get an imperative sentence, resulting in the three imperative sentences 
┌!(p  q)┐, ┌!p  q┐, and ┌p  !q┐. There is only one way to prefix subsentences of p (i.e., the 
second premise) with ‘!’ so as to get an imperative sentence, resulting in ┌!p┐. Finally, there is 
only one way to prefix subsentences of q (i.e., the conclusion) with ‘!’ so as to get an imperative 
sentence, resulting in ┌!q┐. So there are three unconditional imperative counterparts of Modus 
Ponens, listed in Table 3, and together they make up Unconditional Modus Ponens. Similarly for 
the remaining rules in Table 3. Due to limitations of space, for certain pure imperative inference 
rules in Table 3 only some of the parts are listed: there are eight unlisted parts of UMT, four of 
UDS, and 32 of UDD.17 
 

2.4.3. Strong syntactic validity 
 

A strong derivation (in SPIL) of an imperative sentence i from (the members of) a non-empty 
finite set  of imperative sentences is a finite sequence of imperative sentences such that (1) the 
last line of the sequence is i and (2) each line of the sequence either is a conjunction of all mem-
bers of  or can be obtained from a previous line by applying once Strengthening the Antecedent, 
Ex Contradictione Quodlibet, or a replacement rule from Table 1. A pure imperative argument is 
strongly syntactically valid (in SPIL) exactly if there is a strong derivation of its conclusion from 
its premises. Every strong derivation is a derivation, so every strongly syntactically valid pure 
imperative argument is also weakly syntactically valid. Moreover, every replacement derivation 
is a strong derivation. 
 

Note two differences between derivations and strong derivations. First, all pure imperative infer-
ence rules in Table 2 and in Table 3 may be applied in a derivation, but the only inference rules 
that may be applied in a strong derivation are Strengthening the Antecedent and Ex Contradictio-
ne Quodlibet: one can show that each of the remaining pure imperative inference rules has in-
stances that are not strongly semantically valid arguments (except for ICI and UCI, but it turns 
out that these two rules would be useless in strong derivations). Second, any single premise can 
be the first line of a derivation, but no single premise (as opposed to a conjunction of all premis-
es) can be the first line of a strong derivation (unless there is only one premise). This is because, 
as one can show, a set of imperative sentences does not always strongly—but does always weak-

                                                           
17 Here is why this method of getting unconditional imperative counterparts of pure declarative inference rules 
works. For any pure declarative inference rule in Table 3, if q is a conjunction of all premises of (an instance of) the 
rule and q is the conclusion of the rule, then q entails q, so (1) ┌!q┐ is derivable from ┌!q┐ (by WC); moreover, for 
any unconditional imperative counterpart of the rule, (2) its conclusion is replacement interderivable with ┌!q┐ (by 
UN or UD), and (3) a conjunction of its premises is replacement interderivable with ┌!q┐ (for example, concerning 
the third part of UMT, ┌!~q & (p  !q)┐ is replacement interderivable with ┌!(~q & (p  q))┐ by MC). Note that (3) 
relies on the fact that, for any pure declarative inference rule in Table 3, at least one premise of any unconditional 
imperative counterpart of the rule is replacement interderivable with an unconditionally prescriptive sentence—
hence the label “unconditional”. This fails for example for Hypothetical Syllogism, a pure declarative inference rule 
not in Table 3: it turns out that five (out of 27) “unconditional imperative counterparts” of Hypothetical Syllogism 
have instances that are not weakly semantically valid arguments. For example, ┌p  !q┐ and ┌q  !r┐ (which are not 
unconditionally prescriptive sentences) do not weakly semantically entail ┌!(p  r)┐. 
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ly—semantically entail every sentence in the set; for example, {!M, !P} does not strongly—but 
does weakly—semantically entail ‘!M’ (see Vranas 2011: 397). 
 

Here is an example of a strong derivation (of ‘M  !P’ from ‘!(M  P)’): 
 
 

1. !(M  P)    Conjunction of all premises 
2. M  !(M  P)    1 Strengthening the Antecedent 
3. M  !(M & (M  P))   2 Absorption 
4. M  !(M & (~M  P))   3 Material Implication 
5. M  !((M & ~M)  (M & P))  4 Distributivity 
6. M  !(M & P)    5 Contradictory Disjunct 
7. M  !P     6 Absorption 

 

2.5. Soundness and completeness 
 

As I prove in the Appendix, a pure imperative argument is (1) strongly semantically valid exactly 
if it is strongly syntactically valid, and is (2) weakly semantically valid exactly if it is weakly 
syntactically valid.18 This result provides an indirect defense of my definitions of strong and 
weak semantic validity in §2.3, assuming that the replacement and inference rules I used to de-
fine strong and weak syntactic validity capture all “natural” patterns of sentential pure imperative 
reasoning.19 
 

3. Sentential modal imperative logic (SMIL) 
 

Does “it is impossible for you to win” entail “don’t try to win”? Here are two reasons why this 
question lies beyond the scope of the logic examined in the previous section, namely SPIL. First, 

                                                           
18 Hansen (2014) provides an alternative sound and complete natural deduction system for SPIL. More precisely, 
Hansen considers a language of SPIL in which every imperative sentence is either of the form ┌!q┐ or of the form ┌p 
 !q┐ (Hansen uses ‘’ instead of ‘’). This limitation is not crucial: as I prove in the Appendix, every imperative 
sentence of the language of SPIL is inderderivable with a sentence of the form ┌p  !q┐ by using only replacement 
rules (which Hansen does not introduce, although in effect he relies on TA and one of his inference rules corresponds 
to IC). Hansen’s system has six inference rules; five of them correspond to (special cases of) SA, WC, ECQ, and IC, 
but the remaining rule is new. (Only the rule that corresponds to a special case of WC may not be applied in Han-
sen’s “strong deductions”, which roughly correspond to strong derivations.) Here is the new rule (which Hansen calls 
“Contextual Extensionality”) in my notation: if p entails ┌q  r┐, then from ┌p  !q┐ one can obtain in a (strong) 
derivation ┌p  !r┐. Although this rule has no analog in my system (but see MEC in §3.4.1), its effects can be simu-
lated by using only replacement rules: if p entails ┌q  r┐, then ┌p & q┐ and ┌p & r┐ are logically equivalent and 
thus replacement interderivable, and thus so are ┌p  !(p & q)┐ and ┌p  !(p & r)┐, and so are also (by AB) ┌p 
 !q┐ and ┌p  !r┐. Although including this rule in my system would make shorter derivations available, I did not 
include it as an inference rule because I find it less “natural” than the rules in Table 2, and I did not include a corre-
sponding replacement rule because it would be of a different form from the rules in Table 1. 
19 One might claim that I have not really presented a “natural deduction” system, for two reasons: (1) my system 
does not include Conditional Proof, and (2) my system does not include two rules for each connective, an introduc-
tion rule and an elimination rule. Concerning (1), I reply that I could introduce a restricted version of Conditional 
Proof; see the end of note 41. Concerning (2), in a survey of natural deduction systems, Pelletier notes that “there are 
many systems we happily call natural deduction which do not have rules organized in this manner” (1999: 2, 2000: 
106). Pelletier also argues that including only “natural” rules of inference is not sufficient for being a natural deduc-
tion system: a “system with only modus ponens as a rule of inference obeys the restriction that all the rules of infer-
ence are ‘natural’, yet no one wants to call such a system ‘natural deduction,’ so it is not a sufficient condition” 
(1999: 3, 2000: 107). This example, however, provides no reason to deny that I have presented a natural deduction 
system. 
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SPIL does not include modal operators. Second, SPIL does not deal with arguments from declar-
ative premises to imperative conclusions. The logic I examine in the present section, namely 
SMIL, does away with these two limitations of SPIL: SMIL includes modal operators and deals 
not only with pure arguments (i.e., arguments whose premises and conclusions are either all de-
clarative or all imperative) but also with mixed (i.e., non-pure) ones. 
 

3.1. Syntax 
 

The syntax of SMIL closely parallels the syntax of SPIL. The symbols of the language of SMIL 
are the symbols of the language of SPIL (§2.1) plus the modal operators ‘’ (“it is necessary 
that”) and ‘’ (“it is possible that”), and the formation rules of the language of SMIL for de-
clarative and imperative sentences are the formation rules of the language of SPIL (§2.1) plus the 
following formation rule: if p is a declarative sentence, then ┌p┐ and ┌p┐ are declarative sen-
tences. Here are two examples of how imperative English sentences can be symbolized in (the 
language of) SMIL: 
 

Let it be possible for you to procreate: !P 
Don’t copulate if it is impossible for you to ovulate: ~O  ~!C 

 

3.2. Semantics 
 

An interpretation of the language of SMIL is an ordered quadruple whose four coordinates are: 
first, a non-empty set whose members are called the worlds of the interpretation; second, a two-
place relation on—i.e., a set of ordered pairs of—worlds of the interpretation (called the accessi-
bility relation of the interpretation); third, a function that assigns to every world of the interpreta-
tion a set of sentence letters (namely—see below—those sentence letters that are true at the 
world on the interpretation); and fourth, a function that assigns to every world of the interpreta-
tion a favoring relation (defined as in §2.2, namely as a three-place relation on declarative sen-
tences that satisfies the intensionality and asymmetry conditions). Declarative sentences are true 
or false at worlds on interpretations, and imperative sentences are satisfied, violated, or avoided 
at worlds on interpretations. Specifically, replace C1-C15 (§2.2) with C1*-C15* below, and add 
C16* and C17* below to deal with the modal operators: 
 

(C1*) A sentence letter is true at a world w on an interpretation m iff it is a member of the set 
of sentence letters that the third coordinate of m assigns to w. 
(C2*) ┌~p┐ is true at w on m iff p is not true at w on m. 
... 
(C15*) i is avoided at w on m iff i is neither satisfied nor violated at w on m. 
(C16*) ┌p┐ is true at w on m iff p is true at w on m for every w accessible from w on m 
(i.e., every w such that <w, w> is in the accessibility relation of m). 
(C17*) ┌p┐ is true at w on m iff p is true at w on m for some w accessible from w on m. 

 

(The formulations of C2*-C15* are obtained by inserting “at w” before every occurrence of “on 
m” in the formulations of C2-C15.) Definitions of a (declarative or imperative) tautology, a (de-
clarative or imperative) contradiction, and logical equivalence (between declarative or between 
imperative sentences) can be given that are straightforward variants of the definitions in §2.2. For 
example, an imperative contradiction is an imperative sentence i such that, for any interpretation 
m and any world w of m, i is violated at w on m. Similarly, imperative sentences i and j are logi-
cally equivalent exactly if, for any interpretation m and any world w of m, i and j are either both 
satisfied at w on m or both violated at w on m or both avoided at w on m. 
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3.3. Semantic validity 
 

A satisfaction sentence of an imperative sentence i is any declarative sentence s such that, for any 
interpretation m and any world w of m, s is true at w on m exactly if i is satisfied at w on m. A 
violation sentence and an avoidance sentence of an imperative sentence are defined similarly. For 
example, if i is ‘M  !P’, then ‘M & P’ is a satisfaction sentence of i, ‘M & ~P’ is a violation 
sentence of i, and ‘~M’ is an avoidance sentence of i. (Every imperative sentence has a satisfac-
tion, a violation, and an avoidance sentence: as I prove in the Appendix, for any imperative sen-
tence i, there are declarative sentences p and q such that i and ┌p  !q┐ are logically equivalent, 
and then ┌p & q┐ is a satisfaction sentence of i, ┌p & ~q┐ is a violation sentence of i, and ┌~p┐ is 
an avoidance sentence of i. Any two satisfaction sentences of i are logically equivalent, and simi-
larly for violation and avoidance.) Given these definitions, I define strong and weak support at a 
world on an interpretation as follows: 
 

DEFINITION 3. For any declarative sentence p, any imperative sentence i, any interpretation m, 
and any world w of m: 
(1) p strongly supports i at w on m exactly if (a) p is true at w on m, (b) for some violation 
sentence v of i, ┌v┐ is not true at w on m, and (c) for any declarative sentences q and r such 
that ┌~q┐ and ┌~r┐ are not both true at w on m, if (i) ┌(q  s)┐ is true at w on m for 
some satisfaction sentence s of i and (ii) ┌(r  v)┐ is true at w on m for some violation sen-
tence v of i, then p favors q over r at w on m (i.e., <p, q, r> is in the favoring relation that the 
fourth coordinate of m assigns to w); 
(2) p weakly supports i at w on m exactly if p strongly supports at w on m some imperative 
sentence i such that (a) ┌(s  s)┐ is true at w on m for some satisfaction sentences s and s 
of i and i respectively and (b) ┌(a  a)┐ is true at w on m for some avoidance sentences a 
and a of i and i respectively. 
 

Definition 3 closely parallels Definition 1 (§2.3). However, instead of the interpretation-invariant 
notions used in Definition 1 (e.g., the notion of q being a contradiction), corresponding interpre-
tation-relative notions are used in Definition 3 (e.g., the notion of ┌~q┐ being true at w on m). 
This is in order to get the result that certain “natural” inference rules are sound. From the second 
part of Definition 3 it follows that every declarative sentence that strongly supports i at w on m 
also weakly supports i at w on m. 
 

Say that p guarantees q at w on m exactly if both p and ┌(p  q)┐ are true at w on m. I have 
argued in previous work (Vranas 2016: 1708-10) that there is an analogy between guaranteeing 
and supporting. To capture this analogy, and also to have a uniform terminology for declarative 
and imperative sentences, say that p strongly sustains  at w on m exactly if p either guarantees 
or strongly supports  at w on m (depending on whether  is a declarative or an imperative sen-
tence), and define weak sustaining similarly (by replacing ‘strongly’ with ‘weakly’). Given this 
terminology, and building on previous work, I define argument validity as follows: 
 

DEFINITION 4. (1) An argument is strongly semantically valid (in SMIL) exactly if, for any in-
terpretation m and any world w of m, every declarative sentence that strongly sustains at w on 
m both every conjunction of all declarative premises and every conjunction of all imperative 
premises of the argument also strongly sustains at w on m the conclusion of the argument. (2) 
Weak semantic validity is defined similarly by replacing ‘strongly’ with ‘weakly’ throughout 
(1). 
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This definition corresponds to the weakest normal system (i.e., system K) of propositional modal 
logic. If one modifies the definition so as to quantify only over those interpretations whose acces-
sibility relation satisfies a constraint c (call them c-interpretations), then one obtains a defini-
tion—call it Definition 4c—of what may be called strong and weak semantic c-validity. For ex-
ample, by quantifying only over those interpretations whose accessibility relation satisfies the 
constraint of being reflexive (), symmetric (), and transitive (), one obtains a definition of 
strong and weak semantic -validity (corresponding to system K of propositional modal 
logic, better known as system S5). (This notation is adapted from Priest 2008: 36-8.) One can 
define similarly a (declarative or imperative) c-contradiction, as well as logical c-equivalence 
between declarative or between imperative (but not between declarative and imperative) sentenc-
es. 
 

Definition 4 is a general definition of argument validity: it applies to arguments with declarative 
or imperative conclusions, and with only declarative, only imperative, or both declarative and 
imperative premises. As I prove in the Appendix, Definition 4 yields as special cases accounts of 
semantic validity for pure declarative and pure imperative arguments without modal operators 
equivalent to the accounts in §2.3. As I also prove in the Appendix, it follows from the above 
definitions that (1) an imperative argument (namely an argument whose conclusion is impera-
tive), whether pure or mixed, is strongly semantically c-valid only if it is also weakly semantical-
ly c-valid (for any constraint c that entails reflexivity),20 and (2) a declarative argument (namely 
an argument whose conclusion is declarative), whether pure or mixed, is strongly semantically 
-valid exactly if it is weakly semantically -valid. (For pure declarative arguments, the 
equivalence between strong and weak semantic c-validity for any c is immediate—and thus one 
can just talk of semantic c-validity—because for declarative sentences both strong and weak sus-
taining amount to guaranteeing.) Finally, in the Appendix I prove that for any mixed argument 
there is a pure declarative argument which is strongly semantically ρστ-valid exactly if so is the 
mixed argument (and similarly for weak semantic ρστ-validity). 
 

I proceed now to develop a syntactic account of c-validity equivalent to the semantic account 
provided by the above definitions. 
 

3.4. Syntactic validity 
 

Take any (declarative or imperative) sentence  and any non-empty set Γ of (only declarative, or 
only imperative, or both declarative and imperative) sentences. Given a constraint c on the acces-
sibility relations of interpretations, a c-derivation (in SMIL) of  from (the members of) Γ is a 
finite sequence of sentences (called the lines of the derivation) such that (1) the last line of the 
sequence is  and (2) each line of the sequence either is (a member or) a conjunction of declara-
tive or of imperative members of Γ or can be obtained from previous lines either (a) by applying 
once a replacement or an inference rule from SPIL (§2.4) or an applicable inference rule from 

                                                           
20 Moreover, an imperative argument with only declarative premises is strongly semantically c-valid exactly if it is 
weakly semantically c-valid (if c entails ). Some of these results apparently conflict with my previous work; for 
example, apparently I have argued that some strongly semantically c-valid imperative arguments are not weakly se-
mantically c-valid (Vranas 2016: 1736 n. 48). To resolve this apparent conflict, recall that my previous work is about 
“arguments” whose premises and conclusions are not sentences of a formal language, but are instead prescriptions 
and propositions (see note 9). Some of those “arguments” cannot be adequately symbolized in (the language of) 
SMIL, and Definition 4 returns an incorrect verdict for some of them. (Compare: the “argument” from the proposi-
tion that Boston is a city to the proposition that something is a city cannot be adequately symbolized in any language 
of classical sentential—as opposed to predicate—logic.) See §6 for further discussion. 
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Table 4 (see §3.4.1), or (b) by using natural deduction for system Kc of propositional modal log-
ic. (Specifying rules of natural deduction for systems of propositional modal logic would consti-
tute a digression: my focus in this paper is on pure imperative inference rules and mixed infer-
ence rules, not on pure declarative inference rules. SA and WC must be replaced with c-SA and 
c-WC respectively, obtained by replacing “entails” with “c-entails” in Table 2.) Adding con-
straints preserves derivability in propositional modal logic, so for example every -derivation (in 
SMIL) is also a -derivation. An argument is weakly syntactically c-valid (in SMIL) exactly if 
there is a c-derivation of its conclusion from its premises. I define strong syntactic c-validity later 
on (in §3.4.2). 
 

3.4.1. Mixed inference rules 
 

Table 4 lists the mixed inference rules that may be applied in all and only those c-derivations for 
which c entails the constraint (on the accessibility relations of interpretations) listed in the last 
column of the table. For example, Mixed Modus Ponens may be applied in -derivations, -
derivations, and so on (but not in -derivations, -derivations, and so on).21 The first four rules 
in the table have only mixed-premise arguments as instances (namely arguments with both a de-
clarative and an imperative premise), and the last three rules in the table have only cross-species 
arguments as instances (namely arguments with only declarative premises and an imperative 
conclusion or with only imperative premises and a declarative conclusion). Given Modally 
Strengthening the Antecedent (MSA), the second part of c-SA is redundant in c-derivations: if p 
c-entails p, then ┌(p  p)┐ can be obtained (by convention, say that it can be obtained from 
any previous line) by using natural deduction for system Kc of propositional modal logic. Simi-
larly, c-WC is redundant given Modally Weakening the Consequent (MWC), and so is Modally 
Equivalent Consequent (which is included in the table because it is needed for strong syntactic 
validity). Moreover, Mixed Modus Ponens is redundant given MSA and Tautologous Anteced-
ent. To see this, consider the following -derivation: 
 

1. ~M  (!C O)    Premise 
2. ~M     Premise 
3. ((M  ~M)  ~M)   2 Tautologous Antecedent 
4. (M  ~M)  (!C  O)   1, 3 Modally Strengthening the Antecedent 
5. !C  O     4 Tautologous Antecedent 

 

Modally Empty Imperative can be motivated by noting that, given MSA and MWC, ┌p  !q┐ is 
-derivable from ┌~p┐ and any imperative sentence. To see this, consider the following -
derivation: 
 

1. M  !O     Premise 
2. ~P     Premise 
3. (P  M)    2 Propositional Modal Logic (system K) 
4. P  !O     1, 3 Modally Strengthening the Antecedent 
5. P  !(P & O)    4 Absorption 

                                                           
21 Whether one constraint entails another need not be obvious. For example, it turns out that  entails  (so PNV 
may be applied in στ-derivations): if the accessibility relation of an interpretation m is both symmetric and transitive, 
then it is also euclidean. (By definition, it is euclidean exactly if, for any worlds w, w, and w of m, if both w and 
w are accessible from w on m, then w is accessible from w on m.) It also turns out that ρε and ρστ entail each oth-
er (so all and only ρε-derivations are ρστ-derivations). 



 21

6. ((P & O)  C)   2 Propositional Modal Logic (system K) 
7. P  !C     5, 6 Modally Weakening the Consequent 

 

Mixed Ex Contradictione Quodlibet is a straightforward cross-species analog of ECQ. Finally, 
concerning Possible Non-Violation (PNV), note that ┌p  q┐ is a non-violation sentence of ┌p 
 !q┐ (because ┌~(p  q)┐ is logically equivalent to ┌p & ~q┐, which is a violation sentence of 
┌p  !q┐). The following -derivation illustrates an application of PNV: 
 
 

1. !C     Premise 
2. C  P    Premise 
3. C     1 Possible Non-Violation 
4. P     2, 3 Propositional Modal Logic (system Κστ) 
5. P  !C     1 ρστ-Strengthening the Antecedent 
6. P  !(P & C)    5 Absorption 
7. !(P & C)     4, 6 Mixed Modus Ponens 

 

Name of rule and abbreviation  Rule  Constraint 
Modally Strengthening the Antecedent MSA  (p  p) 

p  i 
_______________________ 
p  i 

Reflexivity () 

Modally Weakening the Consequent MWC (q  q) 
!q 
_______________________ 
!q 

(q  q) 
p  !q 
_______________________ 
p  !q 

Reflexivity () 

Modally Equivalent Consequent MEC (q  q) 
!q 
_______________________ 
!q 

(q  q) 
p  !q 
_______________________ 
p  !q 

Reflexivity () 

Mixed Modus Ponens XMP p  i 
p 
_______________ 
i 

 Reflexivity () 

Modally Empty Imperative MEI ~p 
________________ 
p  !q 

 Reflexivity () 

Mixed Ex Contradictione Quodlibet XECQ p & ~p 
________________ 
i 

!(p & ~p) 
______________________ 
q 

Only for the first part: 
Reflexivity () 

Possible Non-Violation PNV !q 
________ 
q 

p  !q 
______________________ 
(p  q) 

Euclideanness () 
 

Table 4. Mixed inference rules. 
 

3.4.2. Strong syntactic validity 
 

A strong c-derivation (in SMIL) of a sentence  from (the members of) a non-empty finite set Γ 
of sentences is a finite sequence of sentences such that (1) the last line of the sequence is  and 
(2) each line of the sequence either is a conjunction of declarative or of all imperative members 
of Γ or can be obtained from previous lines either (a) by applying once c-Strengthening the Ante-
cedent, Ex Contradictione Quodlibet, a replacement rule from Table 1, or an applicable inference 
rule from Table 4 except for MWC, or (b) by using natural deduction for system Kc of proposi-
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tional modal logic.22 An argument is strongly syntactically c-valid (in SMIL) exactly if there is a 
strong c-derivation of its conclusion from its premises. Every strong c-derivation is a c-
derivation, so every strongly syntactically c-valid argument is also weakly syntactically c-valid. 
 

The differences between c-derivations and strong c-derivations in SMIL are analogous to the dif-
ferences between derivations and strong derivations in SPIL (§2.4.3). The only rule from Table 4 
that may not be applied in strong c-derivations is Modally Weakening the Consequent. Here is an 
example of a strong ρ-derivation: 
 

1. O  !(C  P)    Conjunction of all imperative premises 
2. (O  ~P)    Declarative premise 
3. O  !(O & (C  P))   1 Absorption 
4. ((O & (C  P))  (O & C))  2 Propositional Modal Logic (system Kρ) 
5. O  !(O & C)    3, 4 Modally Equivalent Consequent 
6. O  !C     5 Absorption 
7. (~P  O)    2 Propositional Modal Logic (system Kρ) 
8. ~P  !C     6, 7 Modally Strengthening the Antecedent 

 

3.5. Soundness and completeness 
 

For any constraint c on the accessibility relations of interpretations that entails  (and, for mixed 
declarative arguments, also entails ), an argument is (1) strongly semantically c-valid exactly if 
it is strongly syntactically c-valid, and is (2) weakly semantically c-valid exactly if it is weakly 
syntactically c-valid. I prove this result in the Appendix. 
 

4. Quantified pure imperative logic (QPIL) 
 

Does “lock the door of every office on the fifth floor” entail “if your office is on the fifth floor, 
lock the door of your office”? This question lies beyond the scope of the logics examined in the 
previous two sections, namely SPIL and SMIL: those logics do not include quantifiers. The logic 
I examine in the present section, namely QPIL, does away with this limitation. Like SPIL, how-
ever, QPIL deals only with pure arguments. 
 

4.1. Syntax 
 

The symbols of the language of QPIL are the symbols of the language of SPIL (§2.1) plus (1) the 
quantifiers ‘’ and ‘’, (2) the identity symbol ‘=’, (3) the variables ‘x’, ‘y’, ‘z’, ‘x’, ‘y’, ‘z’, 
‘x’, …, (4) the constants ‘b’, ‘d’, ‘e’, ‘b’, …, and (5) for any n  1, the n-place predicates ‘An’, 
‘Bn’, …, ‘Zn’, ‘An’, ….23 The terms (of the language of QPIL) are the variables plus the con-
stants. The atomic formulas are the sentence letters plus the strings of symbols ┌(f = f)┐ and 
                                                           
22 A (strong) derivation (in SMIL) is defined just like a (strong) c-derivation, but with K in the place of Kc and with 
SA (and WC) in the place of c-SA (and of c-WC). For any c, a (strong) derivation is a (strong) c-derivation. A re-
placement (c-)derivation (in SMIL) is a (c-)derivation in which each line other than the first can be obtained from the 
previous line by applying once a replacement rule from Table 1. For any c, a replacement derivation is a replacement 
c-derivation and vice versa. 
23 I use only some lower-case letters for variables and constants because I use almost all other lower-case letters of 
the Roman alphabet as metalinguistic symbols: (1) ‘p’, ‘q’, ‘r’, and ‘t’ for declarative sentences and formulas, (2) ‘i’, 
‘j’, ‘k’, and ‘l’ for imperative sentences and formulas, (3) ‘f’, ‘h’, ‘o’, and ‘u’ for terms, constants, members of 
domains, and variables respectively (see below in the text), (4) ‘a’, ‘s’, and ‘v’ for avoidance, satisfaction, and 
violation sentences respectively, and (5) ‘c’, ‘m’, ‘n’, and ‘w’ for constraints, interpretations, natural numbers, and 
worlds respectively. 
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┌Πf1…fn
┐ for any terms f, f, f1, …, fn and any n-place predicate Π. The declarative formulas are 

all and only those finite strings of symbols that either are atomic formulas or can be built up from 
atomic formulas by applying at least once the following formation rule: if p and q are declarative 
formulas and u is a variable, then ┌~p┐, ┌(p & q)┐, ┌(p  q)┐, ┌(p  q)┐, ┌(p  q)┐, ┌up┐, and 
┌up┐ are declarative formulas. The imperative formulas are all and only those finite strings of 
symbols that can be built up from declarative formulas by applying (1) the formation rules—call 
them R1*-R3*—that can be formulated by replacing ‘sentence’ and ‘sentences’ with ‘formula’ 
and ‘formulas’ respectively everywhere in the formulations of R1-R3 in §2.1 (R1* must be ap-
plied at least once) and (2) the following formation rule: 
 

(R4*) If u is a variable and i is an imperative formula, then ┌ui┐ and ┌ui┐ are imperative 
formulas. 

 

A formula is either a declarative formula or an imperative formula. It follows from these defini-
tions that a formula is imperative exactly if it contains at least one occurrence of ‘!’ and is declar-
ative exactly if it contains no occurrence of ‘!’ (so no formula is both declarative and imperative). 
A subformula of a given formula is any string of consecutive symbols of the given formula that is 
itself a formula. An occurrence of a variable u in a formula φ is (1) bound in φ exactly if it is also 
an occurrence of u in a subformula of φ that begins with ┌u┐ or with ┌u┐, and is (2) free in φ 
otherwise. A (declarative, imperative, or atomic) sentence is a (declarative, imperative, or atom-
ic) formula in which no occurrence of any variable is free. For simplicity, I usually omit sub-
scripts and outermost parentheses, and I usually write ┌f = f┐ instead of ┌(f = f)┐ and ┌f  f┐ in-
stead of ┌~(f = f)┐. Here are some examples of how imperative English sentences can be symbol-
ized in (the language of) QPIL (‘Vx’ stands for “you vaccinate x”, ‘Nx’ for “x is a neonate”, and 
so on; the semicolons separate sentences of QPIL that, as it turns out, are logically equivalent): 
 

Vaccinate everyone: x!Vx; !xVx 
Vaccinate every neonate: x(Nx  !Vx) 
Vaccinate only neonates: x(!Vx  Nx) 
Vaccinate all and only neonates: x(!Vx  Nx); !x(Vx  Nx) 
Vaccinate some neonate: x(Nx  !Vx) 
Don’t vaccinate any neonate: ~x(Nx  !Vx); x(Nx  ~!Vx) 
Don’t vaccinate every neonate: ~x(Nx  !Vx); x(Nx  ~!Vx) 
Oxygenate and vaccinate some neonate: x(Nx  !(Ox & Vx)) 
Oxygenate some neonate that you vaccinate: x((Nx & Vx)  !Ox) 
Oxygenate at least two neonates: xy(((Nx & Ny) & x ≠ y)  !(Ox & Oy)) 
Oxygenate exactly one neonate: x((Nx  !Ox) & y(Ny  (!Oy  x = y))) 
Inoculate at most one neonate against every disease: xy((Nx & Ny)  (z(Dz  !(I2xz & 
I2yz))  x = y)) 

 

One might wonder why “vaccinate every neonate” was symbolized as (1) ‘x(Nx  !Vx)’ instead 
of (2) ‘!x(Nx  Vx)’. It turns out (see §4.2) that (1) is logically equivalent to (3) ‘xNx 
 !x(Nx  Vx)’, and that (2) is not logically equivalent to (3): if there are no neonates, then 
(2)which symbolizes (4) “let it be the case that you vaccinate every neonate”is satisfied but 
(3)which symbolizes (5) “if there are any neonates, let it be the case that you vaccinate every 
neonate”is avoided. (By contrast, the declarative sentences ‘x(Nx  Vx)’ and ‘xNx  
x(Nx  Vx)’ are logically equivalent.) The distinction between (4) and (5) captures a subtle 
ambiguity in the English sentence (6) “vaccinate every neonate” (cf. Ludwig 1997: 39), an ambi-
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guity that can be revealed by asking: what if there are no neonates? In contexts in which the an-
swer is that the command expressed by (6) is then trivially satisfied, (6) can be paraphrased as (4) 
and symbolized as (2); but in contexts in which the answer is that the command expressed by (6) 
is then avoided (i.e., neither satisfied nor violated), (6) can be paraphrased as (5) and symbolized 
either as (3) or, equivalently, as (1). 
 

Similar remarks apply to “vaccinate some neonate”: this was symbolized as ‘x(Nx  !Vx)’—
which, as it turns out (see §4.2), is logically equivalent to ‘xNx  !x(Nx & Vx)’—but can also 
be symbolized as ‘!x(Nx & Vx)’. One might argue that both symbolizations are inadequate: it 
turns out that neither of them (weakly or strongly, semantically or syntactically) entails ‘xNx’, 
but “vaccinate some neonate” can be paraphrased as (7) “there are neonates; vaccinate at least 
one of them” and thus (informally) entails “there are neonates”. In reply, note first that the above 
symbolizations need not be inadequate if “vaccinate some neonate” presupposes but does not en-
tail “there are neonates” and thus cannot be paraphrased as (7). Nevertheless, I can grant that in 
some contexts the above symbolizations are inadequate and “vaccinate some neonate” should be 
symbolized in the same way as (7). But how should (7) be symbolized? 
 

One might claim that it should be symbolized as ‘x(Nx & !Vx)’, which is not a formula of QPIL 
(cf. Clarke 1973: 201; Clarke & Behling 1998: 293; Gensler 1990: 192, 1996: 186, 2002: 185). 
So one might claim that ‘x(Nx & !Vx)’ should be a formula, and one might propose modifying 
my definition of a formula by adopting the following additional formation rule: if p is a declara-
tive formula and i is an imperative formula, then ┌(p & i)┐ and ┌(i & p)┐ are formulas. Address-
ing a similar point in the context of SPIL, in §2.1 I replied in effect that such a rule is unneces-
sary because, for example, nothing important is lost by symbolizing the two parts of “you are not 
going to marry, but nevertheless procreate” separately, as ‘~M’ and ‘!P’. In the context of QPIL, 
however, one might find such a reply unsatisfactory: one might argue that the two parts of (7) 
“there are neonates; vaccinate at least one of them” cannot be symbolized separately because the 
second part (“vaccinate at least one of them”) “is not by itself a complete imperative [sentence], 
since it does not contain the referent of the pronoun [‘them’]” (Castañeda 1963: 228-9). I reply 
that (7) can be paraphrased as “there are neonates; if there are neonates, vaccinate at least one of 
them”, so the second part of (7) can be symbolized separately as ‘xNx  !x(Nx & Vx)’ (equiv-
alently, as ‘x(Nx  !Vx)’). Similar remarks apply to more complex cases; for example, the Eng-
lish sentence (8) “there is only one neonate; vaccinate it” can be paraphrased as (9) “there is only 
one neonate; if there is only one neonate, vaccinate it”, so the second part of (8) can be symbol-
ized separately as (10) ‘x((Nx & y(Ny  x = y))  !Vx)’ (“for any x, if x is the only neonate, 
vaccinate x”).24 I conclude that the proposed additional formation rule is unnecessary.25 

                                                           
24 It turns out that (10) is logically equivalent to ‘x((Nx & y(Ny  x = y))  !Vx)’ (“for some x, if x is the only 
neonate, vaccinate x”). To see that (8) can be paraphrased as (9), compare: the declarative sentence (11) ‘x((Nx & 
y(Ny  x = y)) & Vx)’, which symbolizes “there is only one neonate; you will vaccinate it”, is logically equivalent 
to ‘x(Nx & y(Ny  x = y)) & x((Nx & y(Ny  x = y))  Vx)’, which symbolizes “there is only one neonate; if 
there is only one neonate, you will vaccinate it”. One might note that (11) is also logically equivalent to ‘x(Nx & 
y(Ny  x = y)) & x(Nx  Vx)’ (“there is only one neonate; you will vaccinate every neonate”), so by analogy 
one might propose symbolizing the second part of (8) as “x(Nx  !Vx)’ (“vaccinate every neonate”). I reply that, 
informally, “vaccinate every neonate” is satisfied in case there are exactly two neonates and you vaccinate them both, 
but in such a case there is not only one neonate and thus the second part of (8) is avoided (and so is my proposed 
paraphrase of that part, namely “if there is only one neonate, vaccinate it”). 
25 One might grant that the proposed rule is unnecessary but might argue that the rule is desirable because it makes 
simpler symbolizations available: symbolizing “there is only one neonate; vaccinate it” as ‘x((Nx & y(Ny  x = 
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4.2. Semantics 
 

An interpretation of the language of QPIL is an ordered quadruple whose four coordinates are: 
first, a set of sentence letters (namely those sentence letters that are true on the interpretation); 
second, a favoring relation (defined as in §2.2, namely as a three-place relation on declarative 
sentences that satisfies the intensionality and asymmetry conditions); third, a non-empty set 
called the domain of the interpretation; and fourth, a function (called the denotation function of 
the interpretation) that assigns to every constant a member of the domain (the referent of the con-
stant on the interpretation) and assigns to every n-place predicate a set of ordered n-tuples of 
members of the domain (the extension of the predicate on the interpretation). Declarative sen-
tences are true or false on interpretations, and imperative sentences are satisfied, violated, or 
avoided on interpretations. Specifically, add to C1-C15 (§2.2) C18 and C19 below to deal with 
atomic sentences that are not sentence letters, as well as C20-C23 below to deal with the quanti-
fiers. First, here are C18 and C19: 
 

(C18) For any constants h and h, ┌h = h┐ is true on m iff the referent of h on m is the same as 
the referent of h on m. 
(C19) For any constants h1, …, hn and any n-place predicate Π, ┌Πh1…hn

┐ is true on m iff the 
ordered n-tuple whose coordinates are the referents of h1, …, hn on m (in that order) is a 
member of the extension of Π on m. 

 

To formulate C20-C23, I introduce first some notation and terminology. Take any variable u, any 
constant h, any member o of the domain of m, and any formula φ in which no occurrence of any 
variable different from u is free. Let φ[u/h] be the sentence that results from replacing in φ every 

                                                                                                                                                                                           
y)) & !Vx)’ would be simpler than symbolizing it, as I propose, in terms of both a declarative and an imperative sen-
tence. I reply that adopting the proposed rule would create considerable complications. First, would ┌(p & i)┐ be (1) 
a declarative but not an imperative formula, (2) an imperative but not a declarative formula, (3) both a declarative 
and an imperative formula, or (4) neither a declarative nor an imperative formula? Against (1): if, for example, ‘~M 
& !P’ is a declarative but not an imperative formula (and sentence), then it seems unavoidable to say that ‘~M & !P’ 
is true on all and only those interpretations (let us talk, for simplicity, in the context of SPIL) on which ‘~M’ is true, 
and then it seems unavoidable to say that ‘~M & !P’ is logically equivalent to ‘~M’—an absurd result. Against (2): if 
‘~M & !P’ is an imperative but not a declarative formula, then it seems unavoidable to say that ‘~M & !P’ is satisfied 
(or violated) on all and only those interpretations on which ‘!P’ is satisfied (or violated), and then it seems unavoida-
ble to say that ‘~M & !P’ is logically equivalent to ‘!P’—an absurd result. Against (3): if ‘~M & !P’ is both a declar-
ative and an imperative formula, then (assuming that imperative formulas are not true or false and that declarative 
formulas are not satisfied, violated, or avoided) ‘M & !P’ is not true or false and is not satisfied, violated, or avoid-
ed on any interpretation, and then I do not see what kinds of semantic properties ‘M & !P’ could have, so I do not 
see how it could play any non-trivial role in a definition of semantic validity. In favor of (4): one could say that ‘~M 
& !P’ is a mixed (i.e., neither a declarative nor an imperative) formula, which is (a) true on all and only those inter-
pretations on which ‘~M’ is true and is (b) satisfied (or violated) on all and only those interpretations on which ‘!P’ 
is satisfied (or violated). To say that logical equivalence applies to mixed sentences without saying that ‘~M & !P’ is 
logically equivalent to ‘~M’ or to ‘!P’, one could modify the definition of logical equivalence in §2.2 as follows: 
sentences φ and ψ are logically equivalent only if either they are both declarative or they are both imperative or they 
are both mixed, and mixed sentences φ and ψ are logically equivalent exactly if, for any interpretation m, φ is true on 
m exactly if ψ is true on m, φ is satisfied on m exactly if ψ is satisfied on m, and φ is violated on m exactly if ψ is 
violated on m. One could further say that, if φ is any formula and ψ is a mixed formula, then ┌(φ & ψ)┐ and ┌(ψ & 
φ)┐ are mixed formulas. However, one could not also recognize ‘~M  !P’ as a mixed formula, because then it would 
seem unavoidable to say that ‘~M  !P’ is logically equivalent to ‘~M & !P’ (see Starr 2013). Even more complica-
tions arise if p and i in the proposed formation rule are formulas that are not sentences, so it is unpromising to 
claim—as Clarke (1973: 201; Clarke & Behling 1998: 293) in effect does—that ‘~M & !P’ is not a formula but 
‘x(Nx & !Vx)’ is nevertheless a formula. 
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occurrence of u that is free in φ with h. (If φ is a sentence, then φ[u/h] is just φ.) Let m[h/o] be 
the interpretation that results from replacing in m the referent of h with o. (So m and m[h/o] have 
the same first three coordinates, and their denotation functions assign the same extensions to all 
predicates and the same referents to all constants different from h. If the referent of h on m is o, 
then m[h/o] is just m.) If φ is a declarative formula, say that o verifies φ on m exactly if, for any 
(equivalently: for some) constant h that does not occur in φ, φ[u/h] is true on m[h/o]. If φ is an 
imperative formula, say that o satisfies φ on m exactly if, for any (equivalently: for some) con-
stant h that does not occur in φ, φ[u/h] is satisfied on m[h/o], and define similarly what it is for o 
to violate or to avoid φ on m. Letting Δ be the domain of m, here are C20-C23: 
 

(C20) ┌up┐ is true on m iff every member of Δ verifies p on m. 
(C21) ┌up┐ is true on m iff some member of Δ verifies p on m. 
(C22) ┌ui┐ is (a) satisfied on m iff both some member of Δ satisfies i on m and no member 
of Δ violates i on m, and is (b) violated on m iff some member of Δ violates i on m. 
(C23) ┌ui┐ is (a) satisfied on m iff some member of Δ satisfies i on m, and is (b) violated on 
m iff both some member of Δ violates i on m and no member of Δ satisfies i on m. 

 

In C20-C23 (in contrast to C2-C15), p and i need not be sentences: they must be formulas such 
that ┌up┐, ┌up┐, ┌ui┐, and ┌ui┐ are sentences (i.e., in C20-C23, no occurrence of any varia-
ble different from u is free in p or in i). See Vranas 2008: 549-50 for a defense of C22 and C23 
based on understanding universal and existential quantification as generalizations of conjunction 
and disjunction respectively. By C15, C22, and C23, ┌ui┐ is avoided on m exactly if ┌ui┐ is 
avoided on m, and also exactly if every member of Δ avoids i on m. 
 

The definitions in §2.2 of a (declarative or imperative) tautology, a (declarative or imperative) 
contradiction, and logical equivalence (between declarative or between imperative sentences) 
carry over into QPIL. For example, imperative sentences i and j are logically equivalent exactly 
if, for any interpretation m, i and j are either both satisfied on m or both violated on m or both 
avoided on m.26 Moreover, one can define logical equivalence between formulas that need not be 
sentences: if φ and ψ are (either both declarative or both imperative) formulas in which no occur-
rence of any variable different from u1, …, un is free, then φ and ψ are logically equivalent exact-
ly if, for any (equivalently: for some) distinct constants h1, …, hn that occur neither in φ nor in ψ, 
the sentences φ[u1/h1, …, un/hn] and ψ[u1/h1, …, un/hn] are logically equivalent (where 
φ[u1/h1, …, un/hn] is the sentence that results from replacing in φ every occurrence of u1 that is 
free in φ with h1, and so on—and similarly for ψ). For example, ‘M  ~M’ is logically equivalent 
to ‘x = x’ (although the former formula is a sentence but the latter one is not). 
 

4.3. Semantic validity 
 

The definitions (1) of strong and weak support on an interpretation and (2) of strong and weak 
semantic validity in QPIL for pure imperative arguments (call them Definition Q1 and Definition 

                                                           
26 Now it can be seen that, as stated in §4.1, ‘x(Nx  !Vx)’ is logically equivalent to ‘xNx  !x(Nx & Vx)’. For 
any interpretation m: by C12 and C8, ‘xNx  !x(Nx & Vx)’ is satisfied on m exactly if both ‘xNx’ and ‘x(Nx & 
Vx)’ are true on m; i.e., by C21, exactly if (1) some member of the domain Δ of m verifies ‘Nx & Vx’ on m (and (2) 
some member of Δ verifies ‘Nx’ on m, but (2) is redundant because it follows from (1)); i.e., exactly if, for some 
member o of Δ and any constant h that does not occur in ‘Nx & Vx’, ┌Nh & Vh┐ is true—equivalently: ┌Nh  !Vh┐ 
is satisfied—on m[h/o]; i.e., exactly if some member of Δ satisfies ‘Nx  !Vx’ on m; i.e., by C23, exactly if ‘x(Nx 
 !Vx)’ is satisfied on m (and similarly for violation on m). One can similarly show that, as also stated in §4.1, 
‘x(Nx  !Vx)’ is logically equivalent to ‘xNx  !x(Nx  Vx)’. 
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Q2 respectively) have formulations identical (except that “in SPIL” is replaced with “in QPIL”) 
to the formulations of the corresponding definitions in §2.3 (Definition 1 and Definition 2 re-
spectively), although here one quantifies over sentences, interpretations, and arguments of the 
language of QPIL instead of SPIL. (Similarly for the definition of semantic validity in QPIL for 
pure declarative arguments.) For brevity, I do not formulate Definition Q1 or Definition Q2, and 
I refer to the formulations in §2.3. 
 

4.4. Syntactic validity 
 

A derivation (in QPIL) of an imperative sentence i from (the members of) a non-empty set Γ of 
imperative sentences is a finite sequence of imperative sentences such that (1) the last line of the 
sequence is i and (2) each line of the sequence either is (a member or) a conjunction of members 
of Γ or can be obtained from previous lines by applying once a replacement rule from Table 1 
(§2.4.1) or Table 5 (§4.4.1), or a pure imperative inference rule from Table 2, Table 3 (§2.4.2), or 
Table 6 (§4.4.2). Note that here p, i, and so on in Table 1 are understood as formulas (that need 
not be sentences). A pure imperative argument is weakly syntactically valid (in QPIL) exactly if 
there is a derivation of its conclusion from its premises. I define strong syntactic validity later on 
(in §4.4.3). 
 

4.4.1. Replacement rules 
 

Table 5 lists the general logical equivalences on which the new replacement rules that may be 
applied in derivations in QPIL are based, as well as the names of the corresponding replacement 
rules and the abbreviations of those names. In the table, t and t are any terms, u and u are any 
variables, p and q are any declarative formulas, i and j are any imperative formulas, p[u/t] is the 
formula that results from replacing in p every occurrence of u that is free in p with t, p(t/t) is any 
formula that results from replacing in p some or all occurrences of t (that are free in p, if t is a 
variable) with t (provided that, if t is a variable, all occurrences of t in p(t/t) that result from 
replacing occurrences of t in p are free in p(t/t)), and similarly for i[u/t] and i(t/t). 
 

All but the first two rules in Table 5 are (straightforward extensions of rules) familiar from clas-
sical first-order logic with identity,27 but the first two rules deserve elaboration. According to the 
general logical equivalences on which Unconditional Quantification and Imperative Quantifica-
tion are based, some (imperative) formulas in which an occurrence of ‘!’ is bound (i.e., is also an 
occurrence of ‘!’ in a subformula that begins with ┌u┐ or with ┌u┐ for some variable u) are 
logically equivalent to formulas in which every occurrence of ‘!’ is free (i.e., not bound). It turns 
out that this holds in general: as I prove in the Appendix, for any imperative formula i, there are 
declarative formulas p and q such that i and ┌p  !q┐ are logically equivalent (and, clearly, the 
only occurrence of ‘!’ in ┌p  !q┐ is free). It follows that, if one modified my definition of a 
formula by dropping the formation rule R4*, there would still be enough formulas to symbolize 
every English sentence that can be symbolized in QPIL. A grade of “imperative involvement” 
analogous to the “third grade of modal involvement” (Quine 1953) is redundant in QPIL. 
 

                                                           
27 Like distributivity (§2.4.1), prenex distributivity fails in general for imperative formulas. For example, ‘x(!A  
(Bx  !Cx))’ is not logically equivalent to ‘!A  x(Bx  !Cx)’: by applying MD, UQ, IQ, and PD (not in that 
order), one can show that the former sentence is logically equivalent to ‘!(A  x(Bx & Cx))’ but the latter sentence 
is logically equivalent to ‘!(A  (xBx & x(Bx  Cx)))’. A special case of prenex distributivity can be shown to 
hold, however (cf. note 12): if no occurrence of u in i is free in i, then ┌u(i  !q)┐ is logically equivalent to ┌i  
u!q┐, and ┌u(i & !q)┐ is logically equivalent to ┌i & u!q┐. 
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Unconditional Quantification is redundant given Imperative Quantification, Vacuous Quantifica-
tion, Tautologous Antecedent, and Tautologous Conjunct. To see this, consider the following 
derivation: 
 

1. x!Vx     Premise 
2. x((M  ~M)  !Vx)   1 Tautologous Antecedent 
3. x(M  ~M)  !x((M  ~M) & Vx) 2 Imperative Quantification 
4. x(M  ~M)  !xVx   3 Tautologous Conjunct 
5. (M  ~M)  !xVx   4 Vacuous Quantification 
6. !xVx     5 Tautologous Antecedent 

 

Name of rule and abbreviation Declarative logical equivalences Imperative logical equivalences 
Unconditional Quantification UQ  u!p  !up 

u!p  !up 
Imperative Quantification IQ  u(p  !q)  up  !u(p  q) 

u(p  !q)  up  !u(p & q) 
Quantifier Negation QN ~up  u~p 

~up  u~p 
~ui  u~i 
~ui  u~i 

Quantifier Commutativity QC uup  uup 
uup  uup 

uui  uui 
uui  uui 

Quantifier Distributivity QD u(p & q)  up & uq 
u(p  q)  up  uq 

u(i & j)  ui & uj 
u(i  j)  ui  uj 

Redundant Instance RI up  p[u/t] & up 
up  p[u/t]  up 

ui  i[u/t] & ui 
ui  i[u/t]  ui 

Replacing Variables RV If p and q are similar with respect to 
u and u:28 
up  uq 
up  uq 

If i and j are similar with respect to 
u and u: 
ui  uj 
ui  uj 

Vacuous Quantification VQ If no occurrence of u in p is free in p: 
up  p 
up  p 

If no occurrence of u in i is free in i: 
ui  i 
ui  i 

Prenex Distributivity PD If no occurrence of u in p is free in p: 
u(p  q)  p  uq 
u(p & q)  p & uq 

 

Identity Reflexivity IR p  ~p  t = t  
Identity Substitution IS (t = t) & p  (t = t) & p(t/t) !(t = t) & i  !(t = t) & i(t/t) 

Table 5. New replacement rules. 
 

The above is also an example of a replacement derivation (in QPIL), namely a derivation in 
which each line other than the first can be obtained from the previous line by applying once a re-
placement rule from Table 1 or Table 5. As I prove in the Appendix, the set of replacement rules 
in Table 1 and Table 5 is complete: any logically equivalent sentences  and  are replacement 

                                                           
28 Formulas φ and ψ are similar with respect to variables u and u exactly if (1) ψ is the formula that results from 
replacing in φ every occurrence of u that is free in φ with u, (2) no occurrence of u in φ is free in φ, and (3) no oc-
currence of u in φ that is free in φ is also an occurrence of u in a subformula of φ that begins with ┌u┐ or with 
┌u┐. Less formally, (1)-(3) together amount to the claim that φ and ψ are the same except that φ has free occurrenc-
es of u at exactly those places where ψ has free occurrences of u. 
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interderivable (i.e., there is a replacement derivation of ψ from φ and there is a replacement deri-
vation of φ from ψ). 
 

4.4.2. Inference rules 
 

Table 6 lists the new pure imperative inference rules that may be applied in derivations in QPIL. 
In the Table, u is any variable, h is any constant, p and i are any (declarative and imperative, re-
spectively) formulas in which no occurrence of any variable different from u is free, p[u/h] is the 
sentence that results from replacing in p every occurrence of u that is free in p with h, and simi-
larly for i[u/h]. 
 

Name of rule and abbreviation Rule 
Imperative Universal Instantiation IUI ui 

_______________ 
i[u/h] 

Imperative Existential Generalization IEG !p[u/h] 
_______________ 
u!p 

Imperative Existential Instantiation IEI If h does not occur in any previous line or in the last line 
of the derivation: 
ui 
_______________ 
i[u/h] 

Imperative Universal Generalization IUG If h does not occur in any premise or in i, and no constant 
that occurs in i[u/h] is introduced by IEI (i.e., occurs first 
in a line that can be obtained only by applying IEI): 
i[u/h] 
_______________ 
ui 

Table 6. New pure imperative inference rules. 
 

Imperative Universal Instantiation (IUI) and Imperative Existential Generalization (IEG) are re-
dundant given Strengthening the Antecedent, Weakening the Consequent, Imperative Quantifica-
tion, Unconditional Quantification, and Absorption. To see that IUI is redundant, consider the 
following derivation: 
 

1. x(Nx  !Vx)    Premise 
2. xNx  !x(Nx  Vx)   1 Imperative Quantification 
3. Nb  !x(Nx  Vx)   2 Strengthening the Antecedent 
4. Nb  !(Nb  Vb)   3 Weakening the Consequent 
5. Nb  !(Nb & (Nb  Vb))  4 Absorption 
6. Nb  !(Nb & Vb)   5 Weakening the Consequent 
7. Nb  !Vb    6 Absorption 

 

Despite being redundant, IUI and IEG are useful because they make shorter derivations available. 
Note that the premise of IEG is an unconditionally prescriptive sentence; this is because, for ex-
ample, ‘Nb  !Vb’ does not weakly semantically entail ‘x(Nx  !Vx)’.29 Note also that one can 
immediately derive ‘!xVx’ from ‘!Vb’ by applying Weakening the Consequent (after checking 
that ‘Vb’ entails ‘xVx’; in general, to perform such checks one can use for example a sound and 
complete natural deduction system for classical first-order logic with identity). 
 

                                                           
29 One can show this by using the Equivalence Lemma for QPIL (see the Appendix). Compare the failure of 
“Imperative Disjunctive Addition” pointed out in note 14. 
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4.4.3. Strong syntactic validity 
 

The definitions of a strong derivation in QPIL and of strong syntactic validity in QPIL have for-
mulations identical to the formulations of the corresponding definitions in §2.4.3, except that (1) 
“in SPIL” is replaced with “in QPIL” and (2) here the replacement rules from Table 5 may also 
be applied. Every strong derivation (in QPIL) is a derivation, so every strongly syntactically valid 
pure imperative argument is also weakly syntactically valid. 
 

4.5. Soundness and completeness 
 

As I prove in the Appendix, a pure imperative argument is (1) strongly semantically valid exactly 
if it is strongly syntactically valid, and is (2) weakly semantically valid exactly if it is weakly 
syntactically valid. 
 

5. Quantified modal imperative logic (QMIL) 
 

Does “it is impossible for you to trust anyone who has betrayed you” entail “trust only those who 
have not betrayed you”? This question lies beyond the scope of the logics examined in the previ-
ous three sections: none of those logics includes both quantifiers and modal operators. The logic 
I examine in the present section, namely QMIL, does away with this limitation. Moreover, QMIL 
(like SMIL) deals with both pure and mixed arguments. 
 

5.1. Syntax 
 

The syntax of QMIL closely parallels the syntax of QPIL. The symbols of the language of QMIL 
are the symbols of the language of QPIL (§4.1) plus (1) the one-place predicate ‘E ’ (the existence 
predicate) and (2) the modal operators ‘’ and ‘’, and the formation rules of the language of 
QMIL for declarative and imperative formulas are the formation rules of the language of QPIL 
(§4.1) plus the following formation rule: if p is a declarative formula, then ┌p┐ and ┌p┐ are 
declarative formulas. Here are two examples of how imperative English sentences can be sym-
bolized in (the language of) QMIL: 
 

Worship only necessary beings: x (!Wx  Ex) 
Learn everything you can possibly learn: x (Lx  !Lx) 

 

5.2. Semantics 
 

An interpretation of the language of QMIL is an ordered quintuple whose five coordinates are: 
first, a non-empty set whose members are called the worlds of the interpretation; second, a non-
empty set called the domain of the interpretation (the set of all objects); third, a function that as-
signs to every world of the interpretation (a set whose members are) a set of sentence letters, a 
favoring relation, and a subset (called the domain of the world) of the domain of the interpreta-
tion; fourth, a two-place relation on worlds (the accessibility relation of the interpretation); and 
fifth, a function (the denotation function of the interpretation) that assigns to every constant a 
member of the domain of the interpretation (the referent of the constant on the interpretation) and 
assigns to every n-place predicate at every world a set of ordered n-tuples of members of the do-
main of the interpretation (the extension of the predicate at the world on the interpretation), sub-
ject to the constraint of assigning to the existence predicate at any world the domain of the world 
(so the domain of a world is the set of all objects that exist at the world). The domains of worlds 
may be empty, and the union of the domains of all worlds need not exhaust the domain of the 
interpretation. 
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Declarative sentences are true or false at worlds on interpretations, and imperative sentences are 
satisfied, violated, or avoided at worlds on interpretations. Specifically, add to C1*-C17* (§3.2) 
what I call C18*-C23*, formulated by inserting “at w” before every occurrence of “on m” in the 
formulations of C18-C23 (and of the accompanying definitions) in §4.2, except that “the referent 
of h on m” is not replaced with “the referent of h at w on m” (and similarly for similar expres-
sions): unlike the extensions of predicates, the referents of constants are not relative to worlds. 
(Alternatively, one could say that a constant has the same referent at every world on an interpre-
tation.) Given C20*-C23*, the quantifiers ‘’ and ‘’ “range” over all objects. One could also 
introduce the restricted quantifiers ‘e’ (“for any existing object”) and ‘e’ (“for some existing 
object”), and write ┌eup┐, ┌eup┐, ┌‘eui┐, and ┌eui┐ instead of ┌u(Eu  p)┐, ┌u(Eu & p)┐, 
┌u(Eu  i)┐, and ┌u(Eu  i)┐ respectively. 
 

5.3. Semantic validity 
 

The definitions (1) of strong and weak support on an interpretation and (2) of strong and weak 
semantic validity in QMIL (call them Definition Q3 and Definition Q4c respectively) have for-
mulations identical (except that “in SMIL” is replaced with “in QMIL”) to the formulations of 
the corresponding definitions in §3.3 (Definition 3 and Definition 4c respectively), although here 
one quantifies over sentences, interpretations, and arguments of the language of QMIL instead of 
SMIL. 
 

5.4. Syntactic validity 
 

The definitions of a c-derivation, a strong c-derivation, and weak and strong syntactic c-validity 
in QMIL have formulations identical to the formulations of the corresponding definitions in §3.4, 
except that (1) “in SMIL” is replaced with “in QMIL”, (2) here the replacement rules from Table 
5 and the inference rules from Table 6 may also be applied (the latter not in strong c-derivations), 
and (3) here natural deduction for systems of quantified (instead of propositional) modal logic 
may be used (specifically, systems that correspond to “constant domain” interpretations; see, e.g., 
Fitting & Mendelsohn 1998). Here is an example of a -derivation (which also provides a solu-
tion to the “logic test” in §1): 
 

1. x(!Tx  (Mx  Px))   Premise 
2. x~Px     Premise 
3. !Tb  (Mb  Pb)   1 Imperative Universal Instantiation 
4. ~(Mb  Pb)  ~!Tb   3 Transposition 
5. ~Pb     2 Quantified Modal Logic (system CK30) 
6. (~Mb  ~(Mb  Pb))   5 Quantified Modal Logic (system CK) 
7. ~Mb  ~!Tb    4, 6 Modally Strengthening the Antecedent 
8. !Tb  Mb    7 Transposition 
9. x(!Tx  Mx)    8 Imperative Universal Generalization 

 

5.5. Soundness and completeness 
 

As I explain in the Appendix, a soundness and completeness theorem for QMIL holds that has a 
formulation identical to the formulation of the soundness and completeness theorem for SMIL in 
§3.5. 
                                                           
30 For any c, let CKc be the system of constant domain quantified modal logic that corresponds to system Kc of 
propositional modal logic (cf. Priest 2008: 309). 
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6. Conclusion 
 

The culmination of this paper, namely Quantified Modal Imperative Logic (QMIL), has signifi-
cant expressive resources: it includes both quantifiers and modal operators, and it deals with both 
pure and mixed arguments. Nevertheless, QMIL has also significant expressive limitations. For 
example, QMIL does not include deontic operators, and does not deal with permissive or inter-
rogative sentences (cf. Vanderveken 1991: 10-11). Perhaps more significantly, QMIL does not 
have the expressive resources to adequately symbolize certain natural language sentences about 
reasons. For example, I have argued (Vranas 2016: 1716) that (the proposition expressed by) 
“the fact that you have sworn to tell the truth is an undefeated reason for you to tell the truth” en-
tails (the prescription expressed by) “tell the truth”, but it turns out that no way of symbolizing 
these English sentences in QMIL results in an argument valid in QMIL.31 I think this is no more 
a reason to dismiss QMIL, however, than the inability of classical first-order logic to adequately 
symbolize “some critics admire only one another” (Boolos 1984: 432-3) is a reason to dismiss 
that logic. I maintain a principle of parity: “the standards of success for imperative logic should 
not be higher or lower than those for standard declarative logic” (Vranas 2011: 420). I regard the 
limitations of QMIL as entrances to avenues for future research. 
 

Appendix: Theorems and proofs 
 

A.1. Sentential pure imperative logic (SPIL) 
 

My main goal here is to prove the following theorem: 
 

SOUNDNESS AND COMPLETENESS THEOREM (FOR SPIL). 
(1) Concerning logical equivalence: Sentences  and  are logically equivalent if (soundness) 
and only if (completeness) they are replacement interderivable. 
(2) Concerning strong and weak semantic validity: A pure imperative argument is strongly 
semantically valid if (soundness) and only if (completeness) it is strongly syntactically valid, 
and is weakly semantically valid if (soundness) and only if (completeness) it is weakly syntac-
tically valid. 

 

Since, as I explained in §2.4.3, every strongly syntactically valid pure imperative argument is al-
so weakly syntactically valid, an immediate corollary of the Soundness and Completeness Theo-
rem is that every strongly semantically valid pure imperative argument is also weakly semantical-
ly valid. Before I prove the theorem, I prove the following three lemmata: 
 

CANONICAL FORM LEMMA (FOR SPIL). For any imperative sentence i, there are declarative 
sentences p and q such that i and ┌p  !q┐ are replacement interderivable. 

 

REPLACEMENT LEMMA (FOR SPIL). For any sentences , , and  such that  is a subsen-
tence of  and  is logically equivalent to ,  is logically equivalent to any sentence that re-
sults from replacing in  at least one occurrence of  with . 

 

                                                           
31 Indeed: for any c that entails ρ, (1) the premise of any resulting argument of QMIL is a declarative sentence t that 
is not a c-contradiction (because “the fact that you have sworn to tell the truth is an undefeated reason for you to tell 
the truth” does not express an impossible proposition), and (2) the conclusion is an imperative sentence i such that 
any avoidance sentence a of i is a contradiction (because “tell the truth” expresses an unconditional prescription), so 
(3) t does not semantically c-entail ┌a┐ (because ┌a┐ is a c-contradiction but t is not), and thus (4) the argument 
from t to i is neither strongly nor weakly semantically c-valid (by the Equivalence Lemma for QMIL; see the Appen-
dix). (See also note 20.) 
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EQUIVALENCE LEMMA (FOR SPIL). For any imperative sentences i and j: 
(1) i strongly semantically entails j exactly if either i is a contradiction or both (a) i is satisfied 
on every interpretation on which j is satisfied and (b) i is violated on every interpretation on 
which j is violated; 
(2) i weakly semantically entails j exactly if both (a) j is avoided on every interpretation on 
which i is avoided and (b) i is violated on every interpretation on which j is violated. 

 

A corollary of the Equivalence Lemma is that, for any imperative sentences i and j, the pure im-
perative arguments from i to j and from j to i are both weakly semantically valid exactly if they 
are both strongly semantically valid and also exactly if i and j are logically equivalent. 
 

In §A.1.1-§A.1.3 I prove the three lemmata, and in §A.1.4 I prove the theorem. 
 

A.1.1. Proof of the Canonical Form Lemma 
 

The proof is by induction on the number of occurrences of connectives in an imperative sentence. 
For the base step, take any imperative sentence i in which no connectives occur. Then i is ┌!p┐ 
for some sentence letter p, and then, by TA (see Table 1), i is replacement interderivable with ┌(p 
 ~p)  !p┐. For the inductive step, take any natural number n and suppose (induction hypothe-
sis) that, for any imperative sentence i with at most n occurrences of connectives, there are de-
clarative sentences p and q such that i and ┌p  !q┐ are replacement interderivable. To complete 
the proof, take any imperative sentence i with at most n + 1 occurrences of connectives. There 
are seven cases to consider. 
 

Case 1: For some declarative sentence p, i is ┌!p┐. Then, by TA, i is replacement interderivable 
with ┌(p  ~p)  !p┐. 
 

Case 2: For some imperative sentence j, i is ┌~j┐. Then j has at most n occurrences of connec-
tives and thus, by the induction hypothesis, j is replacement interderivable with ┌p  !q┐ (for 
some declarative sentences p and q; I omit such explanations in what follows). Then i is re-
placement interderivable with ┌~(p  !q)┐, and thus also, by NC and UN, with ┌p  !~q┐. 
 

Case 3: i is ┌j & k┐. Then j has most n occurrences of connectives and thus, by the induction hy-
pothesis, j is replacement interderivable with ┌p  !q┐. Similarly, k is replacement interderivable 
with ┌p  !q┐. So i is replacement interderivable with ┌(p  !q) & (p  q)┐, and thus also, 
by IC, with ┌(p  p)  !((p  q) & (p  q))┐. 
 

Case 4: i is ┌j  k┐. Then, similarly to case 3, i is replacement interderivable with ┌(p  !q)  (p 
 !q)┐, and thus also, by ID, with ┌(p  p)  !((p & q)  (p & q))┐. 
 

Case 5: i is ┌p  j┐. Then, by the induction hypothesis, j is replacement interderivable with ┌q 
 !r┐. So i is replacement interderivable with ┌p  (q  !r)┐, and thus also, by EX, with ┌(p & 
q)  !r┐. 
 

Case 6: i is ┌j  p┐. Then, similarly to case 5, i is replacement interderivable with ┌(q  !r)  
p┐, and thus also, by TR, NC, EX, and UN, with ┌(~p & q)  !~r┐. 
 

Case 7: i is either ┌p  j┐ or ┌j  p┐. Since, by CO, ┌p  j┐ and ┌j  p┐ are replacement inter-
derivable, suppose i is ┌p  j┐. Then, similarly to case 5, i is replacement interderivable with ┌p 
 (q  !r)┐, and thus also, by ME, with ┌(p  (q  !r)) & ((q  !r)  p)┐. So i, by EX and 
case 6, is replacement interderivable with ┌((p & q)  !r) & ((~p & q)  !~r)┐, and thus also, by 
IC, with ┌((p & q)  (~p & q))  !(((p & q)  r) & ((~p & q)  ~r))┐. 
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A.1.2. Proof of the Replacement Lemma 
 

I assume that the lemma holds for the case in which  is a declarative sentence (since this case 
corresponds to a well-known result from classical logic), so suppose  is an imperative sentence 
i. The proof is by induction on the number of occurrences of connectives in i. For the base step, 
take any imperative sentence i in which no connectives occur. Then i is ┌!p┐ for some sentence 
letter p, and if p (which is the only proper subsentence of ┌!p┐) is replaced with some sentence p 
which is logically equivalent to p, then the resulting sentence, namely ┌!p┐, is logically equiva-
lent to ┌!p┐: for any interpretation m, ┌!p┐ is satisfied on m exactly if p is true on m (by C8; see 
§2.2), and thus exactly if p is true on m (by the logical equivalence of p and p), and thus exactly 
if ┌!p┐ is satisfied on m (and similarly for violation on m). For the inductive step, take any natu-
ral number n and suppose (induction hypothesis) that, for any imperative sentence i with at most 
n occurrences of connectives, and any sentences  and  such that  is a subsentence of i and  
is logically equivalent to , i is logically equivalent to any sentence that results from replacing in 
i at least one occurrence of  with . To complete the proof, take any imperative sentence i with 
at most n + 1 occurrences of connectives, any sentences  and  such that  is a proper subsen-
tence of i (the case in which  is i is trivial) and  is logically equivalent to , and any sentence 
i that results from replacing in i at least one occurrence of  with  (to abbreviate, say that i is 
i(/)). To prove that i is logically equivalent to i, there are seven cases to consider (the same 
as the seven cases in §A.1.1). 
 

Case 1: i is ┌!p┐. Then  is a subsentence of p, and i is ┌!p┐, where p is p(/) and thus is log-
ically equivalent to p (since the lemma holds for declarative sentences). It follows, similarly to 
the base case, that i is logically equivalent to i. 
 

Case 2: i is ┌~j┐. Then  is a subsentence of j, and i is ┌~j┐, where j is j(/) and thus, by the 
induction hypothesis, is logically equivalent to j (because j has at most n occurrences of connec-
tives). It follows that i is logically equivalent to i: for any interpretation m, i is satisfied on m ex-
actly if j is violated on m (by C9), and thus exactly if j is violated on m (by the logical equiva-
lence of j and j), and thus exactly if i is satisfied on m (and similarly for violation on m). 
 

Case 3: i is ┌j & k┐. Then  is a subsentence of j or of k. Suppose it is of j (if it is of k, the proof 
proceeds similarly). Then i is ┌j & k┐, where j is j(/) and thus, by the induction hypothesis, 
is logically equivalent to j. It follows that i is logically equivalent to i: for any interpretation m, i 
is satisfied on m exactly if either (i) both j and k are satisfied on m or (ii) one of j and k is satis-
fied on m and the other one is neither satisfied nor violated on m (by C10), and thus exactly if 
either (i) both j and k are satisfied on m or (ii) one of j and k is satisfied on m and the other one 
is neither satisfied nor violated on m, and thus exactly if i is satisfied on m (and similarly for vio-
lation on m). 
 

The proof proceeds similarly in the remaining four cases, which I omit for the sake of brevity. 
 

A.1.3. Proof of the Equivalence Lemma 
 

The lemma provides necessary and sufficient conditions for strong and for weak semantic en-
tailment. The proof has four parts, and is similar to the proof in Appendix A of Vranas 2011. 
 

First part: Sufficient condition for strong semantic entailment. If i is a contradiction, then (by 
Definition 1) no declarative sentence strongly supports i on any interpretation, and then (by Defi-
nition 2) i strongly semantically entails j. If both (a) i is satisfied on every interpretation on which 
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j is satisfied and (b) i is violated on every interpretation on which j is violated, take any interpre-
tation m and any declarative sentence p. Suppose that (1) p strongly supports i on m. Then (2) p is 
true on m (by Definition 1) and (3) j is not a contradiction (because, by Definition 1, i is not a 
contradiction, so on some interpretation i is not violated, and then by (b) on some interpretation j 
is not violated either). Moreover, (4) for any declarative sentences q and r that are not both con-
tradictions, if (i) j is satisfied on every interpretation on which q is true and (ii) j is violated on 
every interpretation on which r is true, then p favors q over r on m (by (1) and Definition 1, be-
cause (by (i) and (a)) i is satisfied on every interpretation on which q is true and (by (ii) and (b)) i 
is violated on every interpretation on which r is true). By (2), (3), (4), and Definition 1, p strongly 
supports j on m, so i strongly semantically entails j. 
 

Second part: Necessary condition for strong semantic entailment. Take a sentence s that is true 
on all and only those interpretations on which i is satisfied, a sentence v that is true on all and 
only those interpretations on which i is violated, and sentences s and v that satisfy the corre-
sponding conditions with respect to j.32 Suppose, for reductio, that (1) i strongly semantically 
entails j but (2) i is not a contradiction and (3) it is not the case that both (a) i is satisfied on every 
interpretation on which j is satisfied and (b) i is violated on every interpretation on which j is vio-
lated. Consider an interpretation m whose first coordinate is {p} (so (4) p is true on m), where p 
is a sentence letter, and whose second coordinate is the set of ordered triples <p, q, r> such that 
(i) p is any declarative sentence logically equivalent to p, (ii) q semantically entails s (i.e., i is 
satisfied on every interpretation on which q is true), (iii) r semantically entails v (i.e., i is violated 
on every interpretation on which r is true), and (iv) q and r are not both contradictions.33 By (2), 
(4), the definition of the second coordinate of m, and Definition 1, p strongly supports i on m. 
Then, by (1) and Definition 2, (5) p also strongly supports j on m. Let q be ┌s & ~s┐ and r be ┌v 
& ~v┐. By (3), q and r are not both contradictions. Moreover, j is satisfied on every interpretation 
on which q is true, and j is violated on every interpretation on which r is true. Then, by (5) and 
Definition 1, p favors q over r on m; i.e., <p, q, r> is in the second coordinate of m. By (ii), ┌s & 
~s┐ semantically entails s, so (there is no interpretation on which ┌(s & ~s) & ~s┐ is true, and 
thus) s semantically entails s; i.e., (a) holds. Similarly, by (iii), ┌v & ~v┐ semantically entails v, 
so v semantically entails v; i.e., (b) holds. But (a) and (b) together contradict (3), and the reductio 
is complete. 
 

Third part: Sufficient condition for weak semantic entailment. Suppose (a) j is avoided on every 
interpretation on which i is avoided and (b) i is violated on every interpretation on which j is vio-
lated. Take any interpretation m and any declarative sentence p that weakly supports i on m. By 
Definition 1, (1) p strongly supports on m some imperative sentence i* such that (i) i is satisfied 
on every interpretation on which i* is satisfied and (ii) i is avoided on all and only those interpre-
tations on which i* is avoided. Let k be ┌(s  v)  !(s* & s)┐, where s and v are as in the sec-
ond part of the proof and s* is a sentence that is true on all and only those interpretations on 
                                                           
32 To see that such sentences exist, note that there are declarative sentences p and q such that i and ┌p  !q┐ are 
replacement interderivable (by the Canonical Form Lemma) and thus logically equivalent (by the Replacement 
Lemma and the fact—see note 34—that all replacement rules are based on logical equivalences). Then i is satisfied 
on all and only those interpretations on which ┌p  !q┐ is satisfied, namely (by C12 and C8) on which both p and q 
are true, so take s to be ┌p & q┐. Similarly, take v to be ┌p & ~q┐. 
33 The second coordinate of m satisfies the asymmetry condition (§2.2): if one supposes for reductio that <p, q, r> 
and <p, r, q> are both in the second coordinate, then one gets that q and r are both contradictions (contradicting 
(iv)): q is a contradiction because it semantically entails both s and v (and there is no interpretation on which i is both 
satisfied and violated), and similarly for r. The intensionality condition (§2.2) is also satisfied. 
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which i* is satisfied. Then (2) k is satisfied only on interpretations on which ┌s* & s┐ is true, so 
(3) i* is satisfied on every interpretation on which k is satisfied. Moreover, (4) i* is violated on 
every interpretation on which k is violated (as one can show by using (a), (b), (i), and (ii); see 
Vranas 2011: 436 n. 68). By (3), (4), and the first part of the lemma, (5) i* strongly semantically 
entails k. By (1), (5), and Definition 2, (6) p strongly supports k on m. But (7) j is satisfied on 
every interpretation on which k is satisfied (by (2)), and (8) j is avoided on all and only those in-
terpretations on which k is avoided (because k is avoided on all and only those interpretations on 
which ┌s  v ┐ is false). By (6), (7), (8), and Definition 1, p weakly supports j on m, so i weakly 
semantically entails j. 
 

Fourth part: Necessary condition for weak semantic entailment. Suppose, for reductio, that (1) i 
weakly semantically entails j but (2) it is not the case that both (a) j is avoided on every interpre-
tation on which i is avoided and (b) i is violated on every interpretation on which j is violated. By 
(2), i is not a contradiction (because i is not violated on every interpretation: either (a) is false, 
and then on some interpretation i is avoided and thus not violated, or (b) is false, and then on 
some interpretation i is not violated). Consider an interpretation m defined as in the second part 
of the proof. As in that part, a sentence letter p strongly supports i on m, so p also weakly sup-
ports i on m. Then, by (1) and Definition 2, p also weakly supports j on m. Then, by Definition 1, 
(3) p strongly supports on m some imperative sentence i* such that (i) j is satisfied on every in-
terpretation on which i* is satisfied and (ii) j is avoided on all and only those interpretations on 
which i* is avoided. By (2), j is not avoided on every interpretation (because either (a) is false, 
and then on some interpretation j is not avoided, or (b) is false, and then on some interpretation j 
is violated and thus not avoided), so (by (ii)) i* is not avoided on every interpretation and thus s* 
and v* are not both contradictions (where s* is as in the third part of the proof and v* is a sen-
tence that is true on all and only those interpretations on which i* is violated). Then, by (3) and 
Definition 1, p favors s* over v* on m, and by the definition of m in the second part of the proof, 
(4) s* semantically entails s and (5) v* semantically entails v. But then (a) holds: on every inter-
pretation on which j (and thus, by (ii), i*) is not avoided, i is not avoided either (because either i* 
is satisfied, and then by (4) i is also satisfied and thus not avoided, or i* is violated, and then by 
(5) i is also violated and thus not avoided). Moreover, (b) holds: on every interpretation on which 
j is violated (and thus neither satisfied nor avoided), i is also violated (because i* is not satisfied, 
by (i) and the fact that j is not satisfied, and i* is not avoided, by (ii) and the fact that j is not 
avoided, so i* is violated and by (5) so is i). But (a) and (b) together contradict (2), and the reduc-
tio is complete. 
 

A.1.4. Proof of the Soundness and Completeness Theorem 
 

Proof of soundness. Take any non-empty finite set Γ of imperative sentences and any imperative 
sentences i and j. For brevity, I prove together the three claims that, if j is (1) replacement deriva-
ble from i, (2) strongly derivable from Γ, or (3) derivable from Γ, then, respectively, (1) i is logi-
cally equivalent to j, (2) Γ strongly semantically entails j, or (3) Γ weakly semantically entails j. (I 
assume that the analog of (1) for declarative sentences holds, since it corresponds to a well-
known result from classical sentential logic.) The proof is by induction on the number of lines of 
a replacement derivation, strong derivation, or derivation. For the base step, suppose there is a 
one-line (case 1) replacement derivation of j from i, (case 2) strong derivation of j from Γ, or 
(case 3) derivation of j from Γ. In case 1, i is the same sentence as j and thus is logically equiva-
lent to j. In case 2, j is a conjunction of all members of Γ and thus (by Definition 2) Γ strongly 
semantically entails j. In case 3, j is (a member or) a conjunction of members of Γ; so, if j is not a 
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conjunction of all members of Γ (if it is, the proof proceeds as in case 2), there is a conjunction k 
of the remaining members of Γ, and ┌j & k┐ is a conjunction of all members of Γ. Then Γ weakly 
semantically entails j because, by Definition 2, Γ weakly semantically entails ┌j & k┐, and by the 
Equivalence Lemma, ┌j & k┐ weakly semantically entails j: by C10 (§2.2), (a) j is avoided on 
every interpretation on which ┌j & k┐ is avoided and (b) ┌j & k┐ is violated on every interpreta-
tion on which j is violated. 
 

For the inductive step, take any non-zero natural number n and suppose (induction hypothesis): 
 

(Case 1) If there is a replacement derivation with at most n lines of j from i, then i is logically 
equivalent to j. 
(Case 2) If there is a strong derivation with at most n lines of j from Γ, then Γ strongly seman-
tically entails j. 
(Case 3) If there is a derivation with at most n lines of j from Γ, then Γ weakly semantically 
entails j. 

 

To complete the proof, take any (case 1) replacement derivation with at most n + 1 lines of j from 
i, (case 2) strong derivation with at most n + 1 lines of j from Γ, or (case 3) derivation with at 
most n + 1 lines of j from Γ. Suppose that j is not (case 1) the same sentence as i, (case 2) a con-
junction of all members of Γ, or (case 3) a conjunction of members of Γ (if it is, the proof pro-
ceeds as in the base step). 
 

In case 1, j can be obtained from an n-th line k (n  n) by applying once a replacement rule. By 
the induction hypothesis and the fact that the sequence of the first n lines of the replacement der-
ivation of j from i is a replacement derivation with at most n lines of k from i, (1) i is logically 
equivalent to k. By the Replacement Lemma and the fact that all replacement rules are based on 
logical equivalences,34 (2) k is logically equivalent to j. By (1), (2), and the transitivity of logical 
equivalence (which follows from its definition in §2.2), i is logically equivalent to j. 
 

In case 2, j can be obtained from an n-th line k (n  n) by applying once SA, ECQ, or a replace-
ment rule. By the induction hypothesis and the fact that the sequence of the first n lines of the 
strong derivation of j from Γ is a strong derivation with at most n lines of k from Γ, (1) Γ strongly 
semantically entails k. By using the Equivalence Lemma and the Replacement Lemma, one can 
show that SA, ECQ, and all replacement rules always correspond to strongly semantically valid 
arguments,35 so (2) k strongly semantically entails j. By (1), (2), and the transitivity of strong 
semantic entailment (which follows from Definition 2), Γ strongly semantically entails j. 
 

In case 3, j can be obtained from one, two, or (for UDD) three previous lines by applying once a 
replacement or an inference rule. For any n-th line k among those that can be used to obtain j, n 
 n, so by the induction hypothesis and the fact that the sequence of the first n lines of the deri-

                                                           
34 One can show that all replacement rules are based on logical equivalences by using C1-C15 (§2.2). For example, 
take the imperative part of EX. For any interpretation m: by C12, ┌p  (q  i)┐is satisfied on m exactly if both p is 
true on m and ┌q  i┐ is satisfied on m; i.e., by C12, exactly if both (a) p is true on m and (b) both q is true on m and 
i is satisfied on m; i.e., by C3, exactly if both ┌p & q┐ is true on m and i is satisfied on m; i.e., by C12, exactly if ┌(p 
& q)  i┐ is satisfied on m (and similarly for violation on m). 
35 Concerning replacement rules, reason as in case 1 and recall that i strongly semantically entails j if i is logically 
equivalent to j. Concerning inference rules, take for example the first part of SA. (a) On every interpretation on 
which ┌p  i┐ is satisfied, both p is true and i is satisfied (by C12), so i is satisfied. (b) On every interpretation on 
which ┌p  i┐ is violated, both p is true and i is violated (by C12), so i is violated. By (a), (b), and the Equivalence 
Lemma, i strongly semantically entails ┌p  i┐. One can show similarly that all replacement and inference rules al-
ways correspond to weakly semantically valid arguments. 
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vation of j from Γ is a derivation with at most n lines of k from Γ, Γ weakly semantically entails 
k. By using the Equivalence Lemma and the Replacement Lemma, one can show that then (1) Γ 
weakly semantically entails any conjunction of all lines that can be used to obtain j,36 and that all 
replacement and inference rules always correspond to weakly semantically valid arguments (see 
note 35), so (2) any conjunction of all lines that can be used to obtain j weakly semantically en-
tails j. By (1), (2), and the transitivity of weak semantic entailment (which follows from Defini-
tion 2), Γ weakly semantically entails j. 
 

Proof of completeness. I prove first completeness concerning logical equivalence. Take any logi-
cally equivalent sentences  and . I assume that  and  are replacement interderivable if they 
are declarative sentences (since this case corresponds to a result from classical logic; I sketch a 
proof in a note37), so suppose  and  are imperative sentences i and j. By the Canonical Form 
Lemma, there are declarative sentences p, q, p, and q such that (1) i and ┌p  !q┐ are replace-
ment interderivable and thus (by soundness) logically equivalent, and (2) j and ┌p  !q┐ are 
replacement interderivable and thus logically equivalent. Then (3) ┌p  !q┐ and ┌p  !q┐ are 
logically equivalent. It follows that p and p are logically equivalent (and thus (4) p and p are re-
placement interderivable, since they are declarative sentences): on any interpretation m, p is true 
exactly if either both p is true and q is true or both p is true and q is false, so exactly if either ┌p 
 !q┐ is satisfied or ┌p  !q┐ is violated, so (by (3)) exactly if either ┌p  !q┐ is satisfied or 
┌p  !q┐ is violated, so exactly if either both p is true and q is true or both p is true and q is 
false, so exactly if p is true. One can show similarly that ┌p & q┐ and ┌p & q┐ are logically 
equivalent, so (5) ┌p & q┐ and ┌p & q┐ are replacement interderivable. To conclude: i is re-
placement interderivable, by (1), with ┌p  !q┐, and thus also, by AB, with ┌p  !(p & q)┐, and 
thus also, by (4), with ┌p  !(p & q)┐, and thus also, by (5), with ┌p !(p & q)┐, and thus al-
so, by AB, with ┌p  !q┐, and thus finally, by (2), with j. 
 

                                                           
36 For example, suppose two lines, k and k, can be used to obtain j. Then Γ weakly semantically entails both k and 
k, so any conjunction l of all members of Γ weakly semantically entails both k and k. By the Equivalence Lemma, 
(a) both k and k are avoided on every interpretation on which l is avoided, and (b) l is violated on every interpreta-
tion on which either k or k is violated. By C10, ┌k & k┐ is avoided on every interpretation on which both k and k 
are avoided, so—by (a)—(1) ┌k & k┐ is avoided on every interpretation on which l is avoided. By C10, either k or k 
is violated on every interpretation on which ┌k & k┐ is violated, so—by (b)—(2) l is violated on every interpretation 
on which ┌k & k┐ is violated. By (1), (2), and the Equivalence Lemma, l weakly semantically entails ┌k & k┐, and 
thus so does Γ. 
37 Take any logically equivalent declarative sentences p and q, let  be the set of sentence letters that occur in p or 
in q, and let n be the number of members of . If p and q are not contradictions, there are replacement derivations 
(in which only MI and the declarative parts of DN, IP, CO, AS, DI, ME, DM, and TC may be applied) of declarative 
sentences p and q from p and q respectively such that each of p and q is in disjunctive Boolean normal form; i.e., it 
is a disjunction (defining disjunctions similarly to conjunctions; see note 8) of n ( 2n) distinct sentences such that 
(1) all n members of  occur, and in the same order (for both p and q), in each of the n sentences, and (2) each of 
the n sentences begins with a string of n – 1 left parentheses and is a conjunction of n sentences each of which either 
is a member of  or is ┌~r┐ for some member r of . (For example, if  = {A, B, C}, then ‘(((A & ~B) & C)  ((~A 
& ~B) & ~C))  ((A & B) & C)’ is in disjunctive Boolean normal form.) By soundness, both p is logically 
equivalent to p and q is logically equivalent to q; so p is logically equivalent to q. But then p and q have exactly 
the same disjuncts (and thus are replacement interderivable by applying only CO and AS): if some disjunct of p is 
not a disjunct of q, then on some (indeed, on every) interpretation on which that disjunct (and thus p) is true every 
disjunct of q (and thus q itself) is false, and then p is not logically equivalent to q. To conclude: p is replacement 
interderivable with p, and thus also with q, and thus also with q. (If p and q are contradictions, a similar proof 
works by considering conjunctive Boolean normal forms.) 
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I prove next completeness concerning strong and weak semantic validity. Take any imperative 
sentence j, any finite non-empty set Γ of imperative sentences, and any conjunction i of all mem-
bers of Γ. By the Canonical Form Lemma, there are declarative sentences p, q, p, and q such 
that (1) i is replacement interderivable with ┌p  !q┐ and (2) j is replacement interderivable with 
┌p  !q┐. Then, by soundness, (3) i is logically equivalent to ┌p  !q┐ and (4) j is logically 
equivalent to ┌p  !q┐. Case 1: Γ strongly semantically entails j. Then (5) i strongly semanti-
cally entails j. Case 1a: i is a contradiction. Then, for any declarative sentence r, i and ┌!(r & ~r)┐ 
are logically equivalent and thus (by completeness for logical equivalence) replacement interde-
rivable, so there is a (replacement, and thus) strong derivation of ┌!(r & ~r) ┐ from i. Then there 
is also a strong derivation of j from i (and thus from Γ), since j can be obtained from ┌!(r & ~r)┐ 
by ECQ. Case 1b: i is not a contradiction. Then, by (5) and the Equivalence Lemma, (6) i is satis-
fied on every interpretation on which j is satisfied and (7) i is violated on every interpretation on 
which j is violated. By (3), (4), and (6): (8) ┌p & q┐ semantically entails ┌p & q┐. By (3), (4), 
and (7): (9) ┌p & ~q┐ semantically entails ┌p & ~q┐. By using (8) and (9), one can show that 
(10) p semantically entails p and that ┌p & (p & q) ┐ and ┌p & q┐ are logically equivalent and 
thus (11) replacement interderivable. To conclude: there is a strong derivation from Γ of i, and 
thus also, by (1), of ┌p  !q┐, and thus also, by AB, of ┌p  !(p & q)┐, and thus also, by (10) 
and SA, of ┌p  !(p & q)┐, and thus also, by AB, of ┌p  !(p & (p & q))┐, and thus also, by 
(11), of ┌p  !(p & q)┐, and thus also, by AB, of ┌p  !q┐, and thus finally, by (2), of j. Case 
2: Γ weakly semantically entails j. Then i weakly semantically entails j. By the Equivalence 
Lemma, (12) j is avoided on every interpretation on which i is avoided and (13) i is violated on 
every interpretation on which j is violated. By (3), (4), and (12): (14) p semantically entails p. By 
(3), (4), and (13): (15) ┌p & ~q┐ semantically entails ┌p & ~q┐. By using (15), one can show 
that (16) ┌p & q┐ semantically entails q. To conclude: there is a derivation from Γ of i, and thus 
also, by (1), of ┌p  !q┐, and thus also, by (14) and SA, of ┌p  !q┐, and thus also, by AB, of 
┌p  !(p & q)┐, and thus also, by (16) and WC, of ┌p  !q┐, and thus finally, by (2), of j.38 
 

A.2. Sentential modal imperative logic (SMIL) 
 

My main goal here is to prove the following theorem: 
 

SOUNDNESS AND COMPLETENESS THEOREM (FOR SMIL). 
For any constraint c that entails  (and, for mixed declarative arguments, also entails ε), an ar-
gument is (1) strongly semantically c-valid exactly if it is strongly syntactically c-valid, and is 
(2) weakly semantically c-valid exactly if it is weakly syntactically c-valid.39 

                                                           
38 From the proof of completeness (including note 37) and the proof of the Canonical Form Lemma, one can see 
that: (1) the set consisting of (a) the replacement rules CO, UN, IC, and ID, (b) the imperative parts of TA, NC, EX, 
TR, ME, and AB, and (c) the declarative parts of DN, IP, AS, DI, DM, and TC is complete with respect to logical 
equivalence; (2) the set consisting of the members of the set in (1) and of the inference rules SA and ECQ is com-
plete with respect to strong semantic entailment; and (3) the set consisting of the members of the set in (1) and of the 
inference rules SA and WC is complete with respect to weak semantic entailment. Alternative sets of (parts of) rules 
that are complete with respect to strong and to weak semantic entailment can be obtained by recalling that, as ex-
plained in §2.4.2, both SA and WC are redundant given ICE, UC, the imperative parts of TA, DI, and EX, and a set 
of replacement rules complete with respect to logical equivalence. 
39 A soundness theorem concerning logical (c-)equivalence also holds: for any c, sentences φ and ψ are logically  
(c-)equivalent if they are replacement (c-)interderivable (i.e., there are replacement c-derivations of ψ from φ and of 
φ from ψ). To obtain a completeness theorem concerning logical (c-)equivalence, one would need to (re)define re-
placement (c-)interderivability so as to also allow applying (1) what I call the “Modal Negation” replacement rule 
(namely the replacement rule which is based on the general logical equivalences between ┌~p┐ and ┌~p┐ and 
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Since, as I explained in §3.4.2, every strongly syntactically c-valid argument is also weakly syn-
tactically c-valid, an immediate corollary of the Soundness and Completeness Theorem is that, 
for any c that entails ρ (and, for mixed declarative arguments, also entails ε), every strongly se-
mantically c-valid argument is also weakly semantically c-valid. In what follows, I use without 
proof the Canonical Form Lemma (for SMIL) and the Replacement Lemma (for SMIL); these 
two lemmata have formulations identical to the formulations of the corresponding lemmata for 
SPIL in §A.1 (although here one quantifies over sentences of the language of SMIL, not just over 
sentences of the language of SPIL), and have proofs very similar to the proofs of the correspond-
ing lemmata for SPIL in §A.1.1 and §A.1.2. Before I prove the theorem, I prove the following 
lemma: 
 

EQUIVALENCE LEMMA (FOR SMIL). Take any declarative sentences t and t, any imperative 
sentences i and i, and any satisfaction sentences s and s, violation sentences v and v, and 
avoidance sentences a and a of i and i respectively. 
(1) Concerning pure declarative arguments: For any c that entails , the argument from t to t 
is semantically c-valid exactly if, for any c-interpretation m and any world w of m, t is true at 
w on m if t is true at w on m. 
(2) Concerning cross-species imperative arguments: For any c that entails , the argument 
from t to i is strongly semantically c-valid exactly if it is weakly semantically c-valid and also 
exactly if t semantically c-entails ┌a┐. 
(3) Concerning mixed-premise declarative arguments: For any c that entails ρε, the argument 
from t and i to t is strongly semantically c-valid exactly if it is weakly semantically c-valid 
and also exactly if ┌t & ~v┐ semantically c-entails t. 
(4) Concerning mixed-premise imperative arguments: For any c that entails , the argument 
from t and i to i is (a) strongly semantically c-valid exactly if ┌t & ~v┐ semantically c-
entails both ┌(s  s)┐ and ┌(v  v)┐, and (b) is weakly semantically c-valid exactly if t 
semantically c-entails both ┌(a  a)┐ and ┌(v  v)┐. 
(5) Concerning cross-species declarative arguments: For any c that entails ρε, the argument 
from i to t is strongly semantically c-valid exactly if it is weakly semantically c-valid and also 
exactly if ┌~v┐ semantically c-entails t. 
(6) Concerning pure imperative arguments: For any c that entails , the argument from i to i 
is (a) strongly semantically c-valid exactly if ┌~v┐ semantically c-entails both ┌(s  s)┐ 
and ┌(v  v)┐, and (b) is weakly semantically c-valid exactly if both a semantically c-
entails a and v semantically c-entails v. 

 

Although the Equivalence Lemma applies directly only to arguments with a single declarative 
premise or a single imperative premise (or both), directly or indirectly it applies to every argu-
ment: by Definition 4c, and given the intensionality condition and the logical equivalence of any 
two conjunctions of all declarative premises or any two conjunctions of all imperative premises, 
one can replace multiple declarative premises with any conjunction of all of them and multiple 
imperative premises with any conjunction of all of them without affecting strong or weak seman-
tic c-validity. A first corollary of the Equivalence Lemma is that a cross-species imperative ar-
gument (for any c that entails ρ; see part 2 of the lemma) and a mixed—i.e., either mixed-
premise or cross-species—declarative argument (for any c that entails ρε or, equivalently, ρστ; 

                                                                                                                                                                                           
between ┌~p┐ and ┌~p┐) and (2) replacement rules specific to c (e.g., for ρτ, the replacement rule which is based 
on the general logical ρτ-equivalence between ┌p┐ and ┌p┐). 
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see parts 3 and 5 of the lemma) is strongly semantically c-valid exactly if it is weakly semantical-
ly c-valid. A second corollary of the Equivalence Lemma is that for any mixed argument there is 
a pure declarative argument which is strongly semantically c-valid exactly if so is the mixed ar-
gument, and similarly for weak semantic c-validity (for any c that entails ρ for mixed imperative 
arguments, and any c that entails ρε for mixed declarative arguments; see parts 2, 3, 4, and 5 of 
the lemma). A third corollary of the Equivalence Lemma is that a pure argument without modal 
operators is (strongly or weakly) semantically c-valid in SMIL exactly if it is (strongly or weakly) 
semantically valid in SPIL. Concerning (1) pure declarative arguments and (2) weak semantic (c-
)validity for pure imperative arguments, the corollary can be proved by comparing respectively 
(1) part 1 of the lemma with what I say about pure declarative arguments in §2.3 and (2) part 6b 
of the lemma with the Equivalence Lemma for SPIL in §A.1; concerning (3) strong semantic (c-
)validity for pure imperative arguments, I prove the corollary in a note.40 Finally, I state without 
proof five further corollaries of the Equivalence Lemma in a note.41 
 

In §A.2.1 I prove the Equivalence Lemma, and in §A.2.2 I prove the theorem. 
 

A.2.1. Proof of the Equivalence Lemma 
 

                                                           
40 Comparing part 6a of the lemma with the Equivalence Lemma for SPIL in §A.1, one can see that it is enough to 
prove that, for any declarative sentences p and q that contain no modal operators, ┌p┐ semantically c-entails ┌q┐ 
if and only if either p is a contradiction or q is a tautology (because then ┌~v┐ semantically c-entails ┌((s  s) 
& (v  v))┐ exactly if either ┌~v┐ is a contradiction or ┌(s  s) & (v  v)┐ is a tautology). The “if” part holds 
because, if p is a contradiction or q is a tautology, then ┌p┐ is a contradiction or ┌q┐ is a tautology. To prove the 
(contrapositive of the) “only if”’ part, suppose that p is not a contradiction and q is not a tautology. Then there are 
interpretations m and m, and worlds w of m and w of m, such that p is true at w on m and q is false at w on m. 
Consider a c-interpretation m* whose first coordinate is a set {w0, w1, w2}, whose second coordinate is an 
accessibility relation such that c is satisfied and both w1 and w2 are accessible from w0, and whose third coordinate is 
a function that (1) assigns to w1 the set of sentence letters that the third coordinate of m assigns to w and (2) assigns 
to w2 the set of sentence letters that the third coordinate of m assigns to w. (It does not matter what the fourth 
coordinate is.) Because p and q contain no modal operators, whether they are true at a world on an interpretation 
depends only on which sentence letters are true at that world on the interpretation, so p is true at w1 on m* and q is 
false at w2 on m*. Then ┌p┐ is true and ┌q┐ is false at w0 on m*, so ┌p┐ does not semantically c-entail ┌q┐. 
(The result does not hold if c entails that at most one world is accessible from any given world, because then, for 
example, ┌M┐ semantically c-entails ┌M┐.) 
41 (1) For any sentences φ and ψ that are either both declarative or both imperative, and for any c that entails ρ, the 
arguments from φ to ψ and from ψ to φ are both weakly semantically c-valid exactly if they are both strongly seman-
tically c-valid and also exactly if φ and ψ are logically c-equivalent (see parts 1 and 6 of the lemma). (2) For any c 
that entails ρε, some declarative sentence and some imperative sentence strongly and weakly semantically c-entail 
each other; for example, the sentences ‘M  ~M’ and ‘(M & ~M)  !P’, and also the sentences ‘~M’ and ‘M 
 !~M’ (see parts 2 and 5 of the lemma). Note, however, that ‘(M & ~M)  !P’ is not an imperative tautology 
and is not logically c-equivalent to ‘M  ~M’. (3) For any c that entails ρ, the argument from ┌t  i┐ to ┌t  i┐ is 
(a) weakly semantically c-valid if so is the argument from t and i to i, and (b) is weakly or strongly semantically c-
valid only if so is the argument from ┌t┐ and i to i. (4) For any c that entails ρ, the argument from ┌t i┐ to 
┌t  i┐ is weakly semantically c-valid exactly if—and is strongly semantically c-valid only if—so is the argument 
from ┌t┐ and i to i. (5) For any c that entails ρ, the argument from i to ┌t  i┐ is weakly semantically c-valid if so 
is the argument from i and t to i. Corollaries (3)-(5) relate pure imperative arguments to mixed-premise imperative 
arguments. Corollary (5) could be used to introduce a restricted version of Conditional Proof: if one modified my 
definition of a c-derivation so as to allow the introduction of provisional assumptions in subderivations, to c-derive 
┌t  i┐ from only imperative premises one could assume t and c-derive i. “Unrestricted Conditional Proof” fails, 
however: to c-derive ┌t  i┐ from t and i it would not be enough to assume t and c-derive i. For example, if t is ‘D 
 (A & (B  C))’, i is ‘A  !B’, t is ‘D’ and i is ‘!C’, the argument from ┌t & t┐ and i to i is weakly semanti-
cally ρ-valid but the argument from t and i to ┌t  i┐ is not (as one can show by using the Equivalence Lemma). 
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(1A) Pure declarative arguments: sufficient condition for semantic c-entailment. Suppose that (1) 
for any c-interpretation m* and any world w* of m*, t is true at w* on m* if t is true at w* on m*. 
Take any c-interpretation m, any world w of m, and any declarative sentence p that guarantees t at 
w on m; i.e., (2) p is true at w on m and (3) ┌(p  t)┐ is true at w on m. By (3) and C16* (see 
§3.2), for any world w of m accessible from w, ┌p  t┐ is true at w on m, and thus (by (1) and 
C2*-C5*) ┌p  t┐ is true at w on m. Then, by C16*, (4) ┌(p  t)┐ is true at w on m. By (2) 
and (4), p guarantees t at w on m. Then, by Definition 4c, t semantically c-entails t. 
 

(1B) Pure declarative arguments: necessary condition for semantic c-entailment. Suppose that 
(1) t semantically c-entails t. Take any c-interpretation m and any world w of m. Suppose that (2) 
t is true at w on m. By C2*-C5*, for any world w of m accessible from w, ┌t  t┐ is true at w on 
m. Then, by C16*, (3) ┌(t  t)┐ is true at w on m. By (2) and (3), t guarantees t at w on m. 
Then, by (1) and Definition 4c, t guarantees t at w on m, so (4) ┌(t  t)┐ is true at w on m. 
Given that c entails ρ, w is accessible from w; so, by (4) and C16*, (5) ┌t  t┐ is true at w on m. 
By (2), (5), and C2*-C5*, t is true at w on m. 
 

(2A) Cross-species imperative arguments: sufficient condition for strong and for weak semantic 
c-entailment. Suppose that (1) t semantically c-entails ┌a┐. Take any c-interpretation m, any 
world w of m, and any declarative sentence p. Suppose that p guarantees t at w on m. Then, by (1) 
and Definition 4c, p guarantees ┌a┐ at w on m; i.e., (2) p is true at w on m and (3) ┌(p  
a)┐ is true at w on m. By (3) and C16*, and given that c entails ρ, ┌p  a┐ is true at w on m, 
and thus (by (2) and C2*-C5*) so is ┌a┐. Then, by C16*, for any world w of m accessible from 
w, a is true at w on m, and thus (by C15* and C2*) so are ┌~s┐ and ┌~v┐. Then, by C16*, (4) 
both ┌~s┐ and ┌~v┐ are true at w on m. But then, given that c entails ρ, (5) ┌v┐ is not true at 
w on m. By (4), C16*, and C2*-C5*: (6) for any declarative sentences q and r, if both ┌(q  
s)┐ and ┌(r  v)┐ are true at w on m, then both ┌~q┐ and ┌~r┐ are true at w on m. By (2), 
(5), (6), and Definition 3, p strongly and weakly supports i at w on m. Then, by Definition 4c, t 
strongly and weakly semantically c-entails i. 
 

(2B) Cross-species imperative arguments: necessary condition for strong and for weak semantic 
c-entailment. Suppose, for reductio, that (1) t weakly semantically c-entails i but (2) t does not 
semantically c-entail ┌a┐. (By Definition 3, if p strongly supports i at w on m, then p also 
weakly supports i at w on m; so, if t strongly semantically c-entails i, then (1) also holds by Defi-
nition 4c, and the proof proceeds as below.) By (2) and the first part of the lemma, there is a c-
interpretation m and a world w of m such that (3) t is true at w on m but (4) ┌a┐ is not true at w 
on m. Consider an interpretation m that (5) has the same first three coordinates as m but (6) has 
as its fourth coordinate a function that assigns to w the empty favoring relation (i.e., the empty 
set). By C1*-C17*, whether a sentence is true at a world on an interpretation does not depend on 
the fourth coordinate of the interpretation. Then, by (3), (4), and (5): (7) t is true at w on m but 
(8) ┌a┐ is not true at w on m. By (7), t guarantees t at w on m (because ┌(t  t)┐ is true at w 
on m). Then, by (1) and Definition 4c, t weakly supports i at w on m. Then, by Definition 3, 
there is an imperative sentence i such that (9) t strongly supports i at w on m and (10) ┌(a  
a) is true at w on m. By (8) and (10), ┌a┐ is not true at w on m. Then there is a world w of 
m, accessible from w, such that a is not true at w on m, and thus either s or v is true at w on 
m. Then (11) ┌~s┐ and ┌~v┐are not both true at w on m. By (9), (11), and Definition 3 (tak-
ing q to be s and r to be v, and noting that both ┌(s  s)┐ and ┌(v  v)┐ are true at w on 
m), t favors s over v at w on m. This contradicts (6), and the reductio is complete. 
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(3A) Mixed-premise declarative arguments: sufficient condition for strong and for weak semantic 
c-entailment. Suppose that (1) ┌t & ~v┐ semantically c-entails t. Take any c-interpretation m, 
any world w of m, and any declarative sentence p. Suppose that (2) p guarantees t at w on m (i.e., 
both p and ┌(p  t)┐ are true at w on m) and (3) p weakly supports i at w on m (if p strongly 
supports i at w on m, then (3) also holds by Definition 3, and the proof proceeds as below). By 
(3) and Definition 3, there is an imperative sentence i such that (4) p strongly supports i at w on 
m and (5) both ┌(s  s)┐ and ┌(a  a)┐ are true at w on m. By (4) and Definition 3, (6) 
┌v┐ is not true at w on m. Suppose, for reductio, that ┌v┐ is true at w on m. Then both ┌~s┐ 
and ┌~a┐ are true at w on m, so (by (5)) both ┌~s┐and ┌~a┐ are true at w on m, and then 
┌v┐ is true at w on m. This contradicts (6), and the reductio is complete: ┌v┐ is not true at w 
on m, so ┌~v┐ is true at w on m. Then, given that c entails ε, ┌~v┐ is true at w on m, and 
thus so is ┌(p  ~v)┐. Then, by (2), both p and ┌(p  (t & ~v))┐ are true at w on m; i.e., 
p guarantees ┌t & ~v┐ at w on m. Then, by (1) and Definition 4c, p guarantees t at w on m. 
Then, by Definition 4c, t and i together weakly semantically c-entail t. 
 

(3B) Mixed-premise declarative arguments: necessary condition for strong and for weak seman-
tic c-entailment. Suppose, for reductio, that (1) t and i together strongly semantically c-entail t (if 
they weakly semantically c-entail t, then (1) also holds by Definition 4c,42 and the proof pro-
ceeds as below) but (2) ┌t & ~v┐ does not semantically c-entail t. By (2) and the first part of 
the lemma, there is a c-interpretation m and a world w of m such that (3) ┌t & ~v┐ is true at w 
on m but (4) t is not true at w on m. Consider an interpretation m that (5) has the same first three 
coordinates as m but (6) has as its fourth coordinate a function that assigns to w the set of ordered 
triples <p, q, r> such that (a) p is any declarative sentence logically equivalent to t, (b) both ┌(q 
 s)┐ and ┌(r  v)┐ are true at w on m, and (c) ┌~q┐ and ┌~r┐ are not both true at w on 
m.43 If one replaces ‘m’ with ‘m’ everywhere in the formulations of (3), (4), and (6), then one 
obtains formulations of claims—call those claims (3), (4), and (6) respectively—that (by (5)) 
also hold. By (3), both (7) t is true at w on m and (8) ┌v┐ is not true at w on m. Then t both 
guarantees t at w on m (by (7)) and strongly supports i at w on m (by (7), (8), (6), and Definition 
3), and thus (by (1) and Definition 4c) t guarantees t at w on m. Then, by (7), and given that c 
entails , t is true at w on m. This contradicts (4), and the reductio is complete. 
 

(4aA) Mixed-premise imperative arguments: sufficient condition for strong semantic c-
entailment. Suppose that (1) ┌t & ~v┐ semantically c-entails both ┌(s  s)┐ and ┌(v  
v)┐. Take any c-interpretation m, any world w of m, and any declarative sentence p. Suppose that 
(2) p guarantees t at w on m and (3) p strongly supports i at w on m, so that (4) p is true at w on 
m. By (2), and given that c entails ρ, t is true at w on m. By (3) and Definition 3, (5) ┌v┐ is not 
true at w on m; then ┌~v┐ is true at w on m, and thus so is ┌t & ~v┐. Then, by (1) and the first 
part of the lemma, (6) both ┌(s  s)┐ and ┌(v  v)┐ are true at w on m. By (5) and (6): (7) 
┌v┐ is not true at w on m. Moreover, (8) for any declarative sentences q and r such that ┌~q┐ 
and ┌~r┐ are not both true at w on m, if both ┌(q  s)┐ and ┌(r v)┐ are true at w on m, 
                                                           
42 Indeed: if every declarative sentence that both guarantees t and weakly supports i at w on m also guarantees t at w 
on m, then every declarative sentence that both guarantees t and strongly supports i at w on m also guarantees t at w 
on m. 
43 This set of ordered triples satisfies the asymmetry condition (§2.2): if one supposes for reductio that <p, q, r> and 
<p, r, q> are both in the set, then one gets that ┌~q┐ and ┌~r┐ are both true at w on m (contradicting (c)): ┌~q┐ 
is true at w on m because both ┌(q  s)┐ and ┌(q  v)┐ are true at w on m (and ┌s & v┐ is a contradiction), and 
similarly for ┌~r┐. The intensionality condition (§2.2) is also satisfied. 
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then (by (6)) both ┌(q  s)┐ and ┌(r  v)┐ are true at w on m, and then (by (3) and Defini-
tion 3), p favors q over r at w on m. By (4), (7), (8), and Definition 3, p strongly supports i at w 
on m. Then, by Definition 4c, t and i together strongly semantically c-entail i. 
 

(4aB) Mixed-premise imperative arguments: necessary condition for strong semantic c-
entailment. Suppose, for reductio, that (1) t and i together strongly semantically c-entail i but (2) 
┌t & ~v┐ does not semantically c-entail both ┌(s  s)┐ and ┌(v  v)┐. By (2) and the first 
part of the lemma, there is a c-interpretation m and a world w of m such that (3) ┌t & ~v┐ is 
true at w on m but (4) ┌(s  s)┐ and ┌(v  v)┐ are not both true at w on m. Consider an in-
terpretation m that satisfies (5) and (6) as in part 3B of the proof. Then (by (5)) claims (3), (4), 
and (6), formulated by replacing ‘m’ with ‘m’ everywhere in the formulations of (3), (4), and (6) 
respectively, also hold. By (3), both (7) t is true at w on m and (8) ┌v┐ is not true at w on m. 
Then t both guarantees t at w on m (by (7)) and strongly supports i at w on m (by (7), (8), (6), 
and Definition 3), and thus (by (1) and Definition 4c): (9) t strongly supports i at w on m. Let q 
be ┌s & ~s┐ and r be ┌v & ~v┐. By (4), ┌~q┐ and ┌~r┐ are not both true at w on m. Moreo-
ver, both ┌(q  s)┐ and ┌(r  v)┐ are true at w on m. Then, by (9) and Definition 3, t fa-
vors q over r at w on m. Then, by (6), both ┌(q  s)┐ (i.e., ┌((s & ~s)  s)┐; equivalently, 
┌(s  s)┐) and ┌(r  v)┐ (i.e., ┌((v & ~v)  v)┐; equivalently, ┌(v  v)┐) are true at w 
on m. This contradicts (4), and the reductio is complete. 
 

(4bA) Mixed-premise imperative arguments: sufficient condition for weak semantic c-entailment. 
Suppose that (1) t semantically c-entails both ┌(a  a)┐ and ┌(v  v)┐. Take any c-
interpretation m, any world w of m, and any declarative sentence p. Suppose that (2) p guarantees 
t at w on m and (3) p weakly supports i at w on m. By (3) and Definition 3, there is an imperative 
sentence i* such that (4) p strongly supports i* at w on m and (5) both ┌(s*  s)┐ and ┌(a* 
 a)┐ are true at w on m for some satisfaction sentence s* and some avoidance sentence a* of i*. 
Let k be ┌~a  !(s* & s)┐, and let sk, vk, and ak be respectively the satisfaction sentence ┌~a & 
(s* & s)┐, the violation sentence ┌~a & ~(s* & s)┐, and the avoidance sentence a of k. Then (6) 
both ┌(sk  s)┐ and ┌(ak  a)┐ are true at w on m. Moreover, as one can show by using (1), 
(5), and the first part of the lemma (cf. Vranas 2011: 436 n. 68), ┌t & ~v*┐ semantically c-
entails both ┌(sk  s*)┐ and ┌(vk  v*)┐, where v* is a violation sentence of i*. Then, by 
part 4a of the lemma, t and i* together strongly semantically c-entail k. Then, by (2), (4), and 
Definition 4c, p strongly supports k at w on m. Then, by (6) and Definition 3, p weakly supports i 
at w on m. Then, by Definition 4c, t and i together weakly semantically c-entail i. 
 

(4bB) Mixed-premise imperative arguments: necessary condition for weak semantic c-
entailment. Suppose, for reductio, that (1) t and i together weakly semantically c-entail i but (2) t 
does not semantically c-entail both ┌(a  a)┐ and ┌(v  v)┐. By (2) and the first part of the 
lemma, there is a c-interpretation m and a world w of m such that (3) t is true at w on m but (4) 
┌(a  a)┐ and ┌(v  v)┐ are not both true at w on m. Consider an interpretation m that sat-
isfies (5) and (6) as in part 3B of the proof. Then (by (5)) claims (3), (4), and (6), formulated by 
replacing ‘m’ with ‘m’ everywhere in the formulations of (3), (4), and (6) respectively, also hold. 
By (4): (7) ┌v┐ is not true at w on m (because, if it is, then so are both ┌(v  v)┐ and 
┌~a┐, and thus so is also ┌(a  a)┐). Then t both guarantees t at w on m (by (3)) and 
(strongly and thus) weakly supports i at w on m (by (3), (7), (6), and Definition 3), and thus (by 
(1) and Definition 4c) t weakly supports i at w on m. Then, by Definition 3, there is an impera-
tive sentence i* such that (8) t strongly supports i* at w on m and (9) both ┌(s*  s)┐ and 
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┌(a*  a)┐ are true at w on m for some satisfaction sentence s* and some avoidance sentence 
a* of i*. Then ┌((~s & ~a)  (~s* & ~a*))┐ is true at w on m, and thus (10) so is ┌(v  
v*)┐. By (4) and (9), ┌~s*┐ and ┌~v*┐ are not both true at w on m (because, if they are, then 
so are ┌a*┐ and (by (9)) ┌a┐, and then so are both ┌(a  a)┐ and ┌~v┐, and thus so is 
also ┌(v  v)┐). Then, by (8) and Definition 3, t favors s* over v* at w on m. Then, by (6), 
both ┌(s*  s)┐ and ┌(v*  v)┐ are true at w on m. Then, by (10): (11) ┌(v  v)┐ is true 
at w on m. Moreover, ┌((~s & ~v)  (~s* & ~v*))┐ is true at w on m, and thus so is ┌(a  
a*)┐. Then, by (9): (12) ┌(a  a)┐ is true at w on m. But (11) and (12) together contradict 
(4), and the reductio is complete. 
 

(5) Cross-species declarative arguments. For any c-interpretation m, any world w of m, and any 
declarative sentence p, p strongly supports i at w on m if and only if p both guarantees ┌t  ~t┐ 
and strongly supports i at w on m: the “if” part is immediate, and the “only if” part holds because, 
if p strongly supports i at w on m, then p is true at w on m and thus p guarantees ┌t  ~t┐ at w on 
m. Then, by Definition 4c, i strongly semantically c-entails t exactly if ┌t  ~t┐ and i together 
strongly semantically c-entail t, and thus (by the third part of the lemma) exactly if ┌(t  ~t) & 
~v┐ semantically c-entails t, and thus (by the first part of the lemma) exactly if ┌~v┐ seman-
tically c-entails t. Similarly for weak semantic c-entailment. 
 

(6) Pure imperative arguments. Reasoning as in the previous paragraph, i strongly semantically 
c-entails i exactly if ┌t  ~t┐ and i together strongly semantically c-entail i, and thus (by part 4a 
of the lemma) exactly if ┌(t  ~t) & ~v┐ semantically c-entails both ┌(s  s)┐ and ┌(v  
v)┐, and thus exactly if ┌~v┐ semantically c-entails both ┌(s  s)┐ and ┌(v  v)┐. Simi-
larly, i weakly semantically c-entails i exactly if ┌t  ~t┐ semantically c-entails both ┌(a  
a)┐ and ┌(v  v)┐, and thus exactly if: (1) for any c-interpretation m and any world w of m, 
both ┌(a  a)┐ and ┌(v  v)┐ are true at w on m. Given that c entails ρ, (1) holds exactly if: 
(2) for any c-interpretation m and any world w of m, both ┌a  a┐ and ┌v  v┐ are true at w on 
m. And (2) holds exactly if both a semantically c-entails a and v semantically c-entails v. 
 

A.2.2. Proof of the Soundness and Completeness Theorem 
 

Take any non-empty finite set Γ of sentences, any sentence φ, and any constraint c that entails ρ 
(and also entails ε if both φ is a declarative sentence and Γ contains an imperative sentence). 
 

Proof of soundness. For brevity, I prove together the two claims that, if φ is (1) strongly c-
derivable or (2) c-derivable from Γ, then, respectively, Γ (1) strongly or (2) weakly semantically 
c-entails φ. The proof is by induction on the number of lines of a strong c-derivation or c-
derivation. For the base step, suppose there is a one-line (case 1) strong c-derivation or (case 2) 
c-derivation of φ from Γ. In case 1, φ is a conjunction of declarative or of all imperative members 
of Γ and thus (as one can show by using Definition 4c) Γ strongly semantically c-entails φ. In 
case 2, φ is (a member or) a conjunction of declarative or of imperative members of Γ; so, if φ is 
not a conjunction of declarative or of all imperative members of Γ (if it is, the proof proceeds as 
in case 1), there is a conjunction k of the remaining imperative members of Γ, and ┌φ & k┐ is a 
conjunction of all imperative members of Γ (see note 8). Then Γ weakly semantically c-entails φ 
because, by Definition 4c, Γ weakly semantically c-entails ┌φ & k┐, and by part 6b of the Equiva-
lence Lemma, ┌φ & k┐ weakly semantically c-entails φ (see the end of the base step in §A.1.4). 
 

For the inductive step, take any non-zero natural number n and suppose (induction hypothesis) 
that, if there is a (case 1) strong c-derivation or (case 2) c-derivation with at most n lines of φ 
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from Γ, then Γ (case 1) strongly or (case 2) weakly semantically c-entails φ. To complete the 
proof, take any (case 1) strong c-derivation or (case 2) c-derivation with at most n + 1 lines of φ 
from Γ. Suppose that φ is not a conjunction of declarative or of (case 1) all imperative or (case 2) 
imperative members of Γ (if it is, the proof proceeds as in the base step). Then φ can be obtained 
from—a set Δ of—previous lines either by using natural deduction for system Kc of 
propositional modal logic or by applying once a replacement rule from Table 1, an applicable 
inference rule from Table 4 (except for MWC in case 1), or: in case 1, c-SA or ECQ; in case 2, c-
SA, c-WC, or any inference rule from SPIL except for SA and WC. For any n-th line k in Δ, n  
n, so by the induction hypothesis and the fact that the sequence of the first n lines of the (case 1) 
strong c-derivation or (case 2) c-derivation of φ from Γ is a (case 1) strong c-derivation or (case 
2) c-derivation of k from Γ, it follows that (1) Γ (case 1) strongly or (case 2) weakly semantically 
c-entails k (for any member k of Δ). By using the Replacement Lemma and the Equivalence 
Lemma, one can show that all replacement and inference rules that may be applied in (case 1) 
strong c-derivations or (case 2) c-derivations always correspond to (case 1) strongly or (case 2) 
weakly semantically c-valid arguments;44 moreover, so does using natural deduction for system 
Kc of propositional modal logic (since it is assumed that a sound natural deduction system is 
used). It follows that (2) Δ (case 1) strongly or (case 2) weakly semantically c-entails φ. By (1) 
and Definition 4c: (3) for any c-interpretation m and any world w of m, if a declarative sentence p 
both guarantees at w on m every conjunction of all declarative members of Γ and (case 1) 
strongly or (case 2) weakly supports at w on m every conjunction of all imperative members of Γ, 
then p both guarantees at w on m every declarative member (and thus every conjunction of all 
declarative members) of Δ and (case 1) strongly or (case 2) weakly supports at w on m every 
imperative member (and thus, as I prove in a note, every conjunction of all imperative members) 
of Δ.45 By (2) and Definition 4c: (4) for any c-interpretation m and any world w of m, if a 
declarative sentence p both guarantees at w on m every conjunction of all declarative members of 

                                                           
44 Concerning replacement rules, they are all based on logical equivalences (as one can show by using C1*-C15*; cf. 
note 34), so their application preserves logical equivalence (by the Replacement Lemma) and thus also both strong 
and weak semantic c-entailment (by parts 1 and 6 of the Equivalence Lemma). Concerning inference rules, take for 
example MSA. If s is a satisfaction sentence of i and v is a violation sentence of i, then (by C12*) ┌p & s┐ is a satis-
faction sentence of ┌p  i┐ and ┌p & v┐ is a violation sentence of ┌p  i┐ (and similarly for ┌p  i┐). Then, by part 
4a of the Equivalence Lemma, for any c that entails ρ, the argument from ┌(p  p)┐ and ┌p  i┐ to ┌p  i┐ is 
strongly semantically c-valid exactly if: (1) ┌(p  p) & ~(p & v)┐ semantically c-entails both ┌((p & s)  (p 
& s))┐ and ┌((p & v))  (p & v))┐. By propositional modal logic (system Kρ), (1) holds. Similarly for the remain-
ing inference rules. Note, concerning the second part of XECQ, that ┌!(p & ~p)┐ strongly semantically c-entails q for 
any c because, by Definition 3, no declarative sentence strongly supports ┌!(p & ~p)┐ at any world on any interpreta-
tion. Note also, concerning PNV, that part 3A of the proof of the Equivalence Lemma uses the assumption that c 
entails ε but not the assumption that c entails ρ (the latter assumption is used in part 3B of the proof). 
45 In case 1, Δ has at most one imperative member: no rule that may be applied in strong c-derivations has more than 
one imperative premise. For case 2, suppose for example that Δ has two imperative members, k and k. Then Γ 
weakly semantically c-entails both k and k. There are three cases to consider. Case 2a: Γ has both declarative and 
imperative members. Take any conjunctions t and i of all declarative and of all imperative members of Γ respective-
ly, and any avoidance sentences a, a, and a and violation sentences v, v, and v of i, k, and k respectively. By 
part 4b of the Equivalence Lemma, t semantically c-entails all of ┌(a  a)┐, ┌(a  a)┐, ┌(v  v)┐, and 
┌(v  v)┐, and thus also both ┌(a  (a & a))┐ and ┌((v  v )  v)┐. By C10*, ┌a & a┐ is an avoidance 
sentence and ┌v  v┐ is a violation sentence of ┌k & k┐. Then, by part 4b of the Equivalence Lemma, t and i to-
gether weakly semantically c-entail ┌k & k┐, and thus so does Γ. Case 2b: Γ has only declarative members. Then, 
by the second part of the Equivalence Lemma, t semantically c-entails both ┌a┐ and ┌a┐, and thus also ┌(a 
& a)┐, so t weakly semantically c-entails ┌k & k┐, and thus so does . Case 2c: Γ has only imperative premises. 
Then reason as in note 36. 
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Δ and (case 1) strongly or (case 2) weakly supports at w on m every conjunction of all imperative 
members of Δ, then p (case 1) strongly or (case 2) weakly sustains φ at w on m. By (3), (4), and 
Definition 4c, Γ (case 1) strongly or (case 2) weakly semantically c-entails φ. 
 

Proof of completeness. If Γ has a declarative member, let t be a conjunction of all declarative 
members of Γ. If Γ has an imperative member, let i be a conjunction of all imperative members 
of Γ, and let p and q be declarative sentences such that i and ┌p  !q┐ are (1) replacement inter-
derivable (such declarative sentences exist by the Canonical Form Lemma) and thus also (2) log-
ically equivalent (by the Replacement Lemma and the fact that all replacement rules are based on 
logical equivalences). Similarly, if φ is an imperative sentence, let p and q be declarative sen-
tences such that φ and ┌p  !q┐ are (3) replacement interderivable and (4) logically equivalent. 
There are six cases to consider, corresponding to the six parts of the Equivalence Lemma. 
 

Case 1: Pure declarative arguments. Completeness holds because it is assumed that a complete 
natural deduction system for propositional modal logic is used. (In what follows, I refer to this 
assumption as “PML-completeness”.) 
 

Case 2: Cross-species imperative arguments. Suppose that Γ strongly (equivalently: weakly) se-
mantically c-entails φ. Then, by (4) and the second part of the Equivalence Lemma, (5) t seman-
tically (and thus also syntactically, by PML-completeness) c-entails ┌~p┐. To conclude: there 
is a (strong) c-derivation from Γ of t, and thus also, by (5), of ┌~p┐, and thus also, by MEI, of 
┌p  !q┐, and thus finally, by (3), of φ. 
 

Case 3: Mixed-premise declarative arguments. Suppose that Γ strongly (equivalently: weakly) 
semantically c-entails φ. Then, by (2) and the third part of the Equivalence Lemma, (6) ┌t & (p 
 q)┐ semantically (and thus also syntactically, by PML-completeness) c-entails φ (recall that ┌p 
 q┐ is a non-violation sentence of ┌p  !q┐). To conclude: there is a (strong) c-derivation from 
Γ of i, and thus also, by (1), οf ┌p  !q┐, and thus also, by PNV, of ┌(p  q)┐, and thus also 
(by adding t as a line right after ┌(p  q)┐ and applying, e.g., CI) of ┌t & (p  q)┐, and thus 
finally, by (6), of φ. 
 

Case 4: Mixed-premise imperative arguments. Suppose first that Γ strongly semantically c-
entails φ. Then, by (2), (4), and part 4a of the Equivalence Lemma: (7) ┌t & (p  q)┐ semanti-
cally (and thus also syntactically, by PML-completeness) c-entails both ┌((p & q)  (p & q))┐ 
and ┌((p & ~q)  (p & ~q))┐. Moreover, as in case 3, (8) there is a strong c-derivation from Γ 
of ┌t & (p  q)┐. By (1), (7), and (8), there is a strong c-derivation from Γ which includes the 
first three lines of the following sequence (which is a strong c-derivation from its first three 
lines): 
 

1. p  !q 
2. ((p & q)  (p & q)) 
3. ((p & ~q)  (p & ~q)) 
4. (p  p)    2, 3 Propositional Modal Logic (system Kc) 
5. p  !q     1, 4 Modally Strengthening the Antecedent 
6. p  !(p & q)    5 Absorption 
7. ((p & q)  (p & q))   2, 3 Propositional Modal Logic (system Kc) 
8. p  !(p & q)    6, 7 Modally Equivalent Consequent 
9. p  !q     8 Absorption 

 

There is then a strong c-derivation from Γ of ┌p  !q┐, and thus also, by (3), of φ. 
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Suppose next that Γ weakly semantically c-entails φ. Then, by (2), (4), and part 4b of the Equiva-
lence Lemma: (9) t semantically (and thus also syntactically, by PML-completeness) c-entails 
both ┌(~p  ~p)┐ and ┌((p & ~q)  (p & ~q))┐. Moreover, (10) there is a c-derivation 
from Γ of t. By (1), (9), and (10), there is a c-derivation from Γ which includes the first three 
lines of the following sequence (which is a c-derivation from its first three lines): 
 

1. p  !q 
2. (~p  ~p) 
3. ((p & ~q)  (p & ~q)) 
4. (p  p)    2 Propositional Modal Logic (system Kc) 
5. p  !q     1, 4 Modally Strengthening the Antecedent 
6. p  !(p & q)    5 Absorption 
7. ((p & q)  (p & q))   3 Propositional Modal Logic (system Kc) 
8. p  !(p & q)    6, 7 Modally Weakening the Consequent 
9. p  !q     8 Absorption 

 

There is then a c-derivation from Γ of ┌p  !q┐, and thus also, by (3), of φ. 
 

Case 5: Cross-species declarative arguments. Suppose that Γ strongly (equivalently: weakly) se-
mantically c-entails φ. Then, by (2) and the fifth part of the Equivalence Lemma, (11) ┌(p  
q)┐ semantically (and thus also syntactically, by PML-completeness) c-entails φ. To conclude: 
there is a (strong) c-derivation from Γ of i, and thus also, by (1), οf ┌p  !q┐, and thus also, by 
PNV, of ┌(p  q)┐, and thus finally, by (11), of φ. 
 

Case 6: Pure imperative arguments. Suppose that Γ strongly semantically c-entails φ. Then ┌p  
~p┐ and i together strongly semantically c-entail φ (see part 6 of the proof of the Equivalence 
Lemma). Then, by case 4 above, (12) there is a strong c-derivation from ┌p  ~p┐ and i of φ. 
Moreover, (13) there is a strong c-derivation from Γ which includes both i and ┌p  ~p┐ (the lat-
ter can be obtained by using natural deduction for system Kc of propositional modal logic). By 
(12) and (13), there is a strong c-derivation from Γ of φ. Similarly if Γ weakly semantically c-
entails φ. 
 

A.3. Quantified pure imperative logic (QPIL) 
 

My main goal here is to prove the following theorem: 
 

SOUNDNESS AND COMPLETENESS THEOREM (FOR QPIL). 
(1) Sentences  and  are logically equivalent exactly if they are replacement interderivable. 
(2) A pure imperative argument is strongly semantically valid exactly if it is strongly syntacti-
cally valid, and is weakly semantically valid exactly if it is weakly syntactically valid. 

 

My proof of the theorem is very similar to the proof of the corresponding theorem for SPIL in 
§A.1, and uses the Canonical Form Lemma (for QPIL), the Replacement Lemma (for QPIL), and 
the Equivalence Lemma (for QPIL). These three lemmata have formulations identical to the for-
mulations of the corresponding lemmata for SPIL in §A.1 (except that, for the Replacement 
Lemma, “subsentence” is replaced with “subformula”, and ψ and ψ are formulas that need not be 
sentences), although here one quantifies over sentences and interpretations of the language of 
QPIL instead of SPIL. 
 

The proofs of the Canonical Form Lemma and of the Replacement Lemma are the same as the 
proofs in §A.1.1 and §A.1.2 respectively, except that (a) “connectives”, “sentence letter”, and 
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“subsentence” are replaced with “connectives or quantifiers”, “atomic sentence”, and “subformu-
la” respectively (and, for the Replacement Lemma, ψ and ψ are formulas that need not be sen-
tences), and (b) in the inductive step, there is one more case to consider (case 8): for some varia-
ble u and some imperative formula j, i is either ┌uj┐ or ┌uj┐. Concerning the Canonical Form 
Lemma: in case 8, by the induction hypothesis, j is replacement interderivable with ┌p  !q┐, 
and then, by IQ, i is replacement interderivable either with ┌up  !u(p  q)┐ or with ┌up 
 !u(p & q)┐.46 Concerning the Replacement Lemma: in case 8, ψ is a subformula of j, and i 
is either ┌uj┐ or ┌uj┐, where j is j(ψ/ψ) and thus, by the induction hypothesis, is logically 
equivalent to j. It follows that, for any interpretation m and any member o of the domain of m, (1) 
o satisfies j on m exactly if o satisfies j on m (and similarly for violating and avoiding): if o satis-
fies j on m, then, for any constant h that occurs neither in j nor in j, j[u/h] is satisfied on m[h/o], 
so j[u/h] is also satisfied on m[h/o] (since j and j are logically equivalent), and thus o satisfies j 
on m (and, similarly, vice versa). By (1), C22, and C23, ┌uj┐ and ┌uj┐ are logically equiva-
lent and so are ┌uj┐ and ┌uj┐, and thus so are also i and i. 
 

The proof of the Equivalence Lemma is the same as the proof in §A.1.3, and the proof of com-
pleteness is the same as the corresponding proof in §A.1.4.47 The proof of soundness concerning 
logical equivalence and strong semantic validity is the same as the corresponding proof in 
§A.1.4, except that one must also show that all replacement rules in Table 5 are based on logical 
equivalences. One can show this by using C1-C15 and C18-C23 (§4.2); I give an example in a 
note.48 It only remains then to prove soundness concerning weak semantic validity. Here the 

                                                           
46 By replacing in this proof “sentence” and “sentences” with “formula” and “formulas” respectively, one obtains a 
proof of the following generalization of the Canonical Form Lemma: for any imperative formula i, there are declara-
tive formulas p and q such that i and ┌p  !q┐ are replacement interderivable (redefining replacement derivations so 
as to allow their lines to be any formulas, not just sentences). One can also prove (although with more significant 
modifications to the proof of the Replacement Lemma) the following generalization of the Replacement Lemma: for 
any formulas , , and  such that  is a subformula of  and  is logically equivalent to ,  is logically equiva-
lent to any formula that results from replacing in  at least one occurrence of  with . Finally, by using these two 
generalizations, one can prove the following result: for any imperative formula i, there are declarative formulas p and 
q such that i and ┌p  !q┐ are logically equivalent. 
47 Just as in §A.1.4, I assume that any logically equivalent declarative sentences are replacement interderivable, 
since this corresponds to a result from classical logic (cf. note 37). Here is a sketch of a proof, due to Jeremy Avigad 
(personal communication). Take any logically equivalent declarative sentences p and q. By TC, (1) p and ┌(p  ~p) 
& p┐ are replacement interderivable, and (2) so are q and ┌(p  ~p) & q┐. Assume (this is proved below) that (3) any 
declarative tautologies are replacement interderivable. Then ┌p  q┐ and ┌p  ~p┐ are replacement interderivable, 
and thus so are (by (1)) p and ┌(p  q) & p┐ and (by (2)) q and ┌(p  q) & q┐. But ┌(p  q) & p┐ and ┌(p  q) & 
q┐ are replacement interderivable (as one can show by using ME, CO, DI, AS, IP, CC, and CD), and thus so are p 
and q. To prove (3), use a result from proof theory, namely that the “one-sided” Gentzen-Schütte sequent calculus 
GS3 (Troelstra & Schwichtenberg 2000: 86) is complete, so (4) there is a proof of any declarative tautology (in “ne-
gation normal form”) from axioms of GS3 using the rules of GS3. The axioms of GS3 amount to disjunctions of the 
form ┌(p  ~p)  q┐, so (5) any universal closures of conjunctions of axioms of GS3 are replacement interderivable 
(by TD, IP, and VQ). (One can add to GS3 axioms for identity; these would be captured by IR and IS.) Moreover, 
one can show that, for each rule of GS3, any universal closure of a conjunction of all premises of (any instance of) 
the rule is replacement interderivable with any universal closure of the conclusion of the rule. (Strictly speaking, the 
premises and the conclusions of instances of the rules of GS3 are finite sets of formulas, so replace each set with any 
disjunction of all its members.) So from (4) it follows that (6) there is a replacement derivation of any declarative 
tautology from a universal closure of a conjunction of axioms of GS3. Finally, (5) and (6) together entail (3). 
48 Take the imperative part of QN, and suppose for simplicity that no occurrence of any variable different from both 
u and u is free in i. Take any distinct constants h and h that do not occur in i, and let j be the sentence i[u/h, u/h]. 
To show that ┌~uj┐ and ┌u~j┐ (and thus ┌~ui┐ and ┌u~i┐) are logically equivalent, take any interpretation m 
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proof deviates from the corresponding proof in §A.1.4 (because in QPIL the sequence of the first 
n lines of a derivation of j from Γ is not always a derivation of the n-th line from Γ: a constant 
introduced by IEI may occur in the n-th line). Given a derivation of j from Γ, call every line that 
can be obtained only by applying IEI an assumption, and say that a line relies on an assumption 
exactly if some constant that occurs in the line occurs first in the assumption (and thus is intro-
duced by IEI). (Every assumption relies on itself.) Say also that a line i depends on an assumption 
i exactly if there is a finite sequence of lines such that the first member of the sequence is i, the 
last member is i, and every member except the first relies on the previous member (i.e., the de-
pendence relation is the ancestral of the reliance relation). I will prove that, (1) for any non-zero 
natural number n that does not exceed the number of lines of the derivation, the n-th line—call it 
in—is weakly semantically entailed by Γ  Θn, where Θn is the set of all assumptions on which in 
depends (and thus is empty if in is the last line of the derivation, so from (1) it follows that j is 
weakly semantically entailed by Γ). Let Γn be Γ  Θn. 
 

The proof of (1) is by induction on n. For the base step, note that i1 is (a member or) a conjunc-
tion of members of Γ (so Θ1 = ), and proceed as in the corresponding proof in §A.1.4. For the 
inductive step, take any non-zero natural number n less than the number of lines of the deriva-
tion, and suppose (induction hypothesis) that, for any non-zero natural number n that does not 
exceed n, Γn weakly semantically entails in. It remains to prove that (2) Γn+1 weakly semantically 
entails in+1. This is immediate if in+1 is an assumption (because then in+1 is a member of Θn+1 and 
thus of Γn+1) or a conjunction of members of Γ, so suppose in+1 is neither an assumption nor a 
conjunction of members of Γ. To prove (2), I will prove two claims: 
 

(S1) There is a (maybe empty) set Θ0 of assumptions earlier than (i.e., previous to) in+1 such 
that Γn+1  Θ0 =  and Γn+1  Θ0 weakly semantically entails in+1. 
(S2) For any non-empty set Θ of assumptions earlier than in+1 such that Γn+1  Θ =  and Γn+1 
 Θ weakly semantically entails in+1, there is a set Θ of assumptions earlier than in+1 such that 
Γn+1  Θ = , Γn+1  Θ weakly semantically entails in+1, and, if Θ  , then the latest 
member of Θ is earlier (i.e., comes earlier in the derivation) than the latest member of Θ. 

 

Here is why S1 and S2 together entail (2). Suppose, for reductio, that S1 and S2 are true but (2) is 
false. Then, by S1, Θ0  . Then, by S2 (with Θ = Θ0), Θ  . Using S2 repeatedly, there is a 
sequence of more than n non-empty sets of assumptions earlier than in+1 such that, for any set in 
the sequence except the first, its latest member is earlier than the latest member of the previous 
set in the sequence. This is impossible, since there are only n lines earlier than in+1, and the reduc-
tio is complete. 
 

                                                                                                                                                                                           
and let Δ be its domain. By C9, ┌~uj┐ is satisfied on m exactly if ┌uj┐ is violated on m; i.e., by C22, exactly if 
some member of Δ violates j on m; i.e., by C9, exactly if some member of Δ satisfies ┌~j┐ on m; i.e., by C23, exactly 
if ┌u~j┐ is satisfied on m (and similarly for violation and avoidance on m). See note 26 for another example. Anoth-
er way to show that the imperative parts of replacement rules in Table 5 are based on logical equivalences is by using 
(a) the logical equivalences on which IQ, the rules in Table 1, and the declarative parts of the rules in Table 5 are 
based, (b) the generalization of the Replacement Lemma given in note 46, and (c) the result given at the end of note 
46. For example, take again the imperative part of QN. The formula ┌~ui┐ is logically equivalent, by (c), to ┌~u(p 
 !q)┐, and, by IQ (more precisely: by a logical equivalence on which IQ is based), to ┌~(up  !u(p  q))┐, 
and, by NC, to ┌up  ~!u(p q)┐, and, by UN, to ┌up  !~u(p  q)┐, and, by the declarative part of QN, to 
┌up  u~(p  q)┐, and, by NC, to ┌up  u(p & ~q)┐, and, by IQ, to ┌u(p  !~q)┐, and, by UN, to ┌u(p  
~!q)┐, and, by NC, to┌u~(p  !q)┐, and finally, by (c), to ┌u~i┐. 
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I prove next S1. Let Δ be a set of lines earlier than in+1 from which in+1 can be obtained by apply-
ing once a replacement or an inference rule (other than IEI, since in+1 is not an assumption). Let 
ΓΔ be the union of all Γn such that in  Δ (so n ≤ n). By the induction hypothesis, for any in in 
Δ, Γn weakly semantically entails in; so (3) ΓΔ weakly semantically entails every member of Δ, 
and thus also any conjunction of all members of Δ (cf. note 36). Moreover, all replacement and 
inference rules that may be applied in derivations always correspond to weakly semantically valid 
arguments (except for IEI, which is irrelevant here, and IUG, which I address in note 49); so (4) 
any conjunction of all members of Δ weakly semantically entails in+1. By (3), (4), and the transi-
tivity of weak semantic entailment, ΓΔ weakly semantically entails in+1,49 and thus so does ΓΔ  
Γn+1. Now let Θ0 be ΓΔ \ Γn+1. Then Γn+1  Θ0 = , Γn+1  Θ0 (i.e., ΓΔ  Γn+1) weakly semanti-
cally entails in+1, and Θ0 is a set of assumptions earlier than in+1 (because the members of Θ0 are 
the assumptions in ΓΔ that are not in Γn+1). 
 

I prove finally S2. Take any non-empty set Θ of assumptions earlier than in+1 such that Γn+1  Θ 
=  and Γn+1  Θ weakly semantically entails in+1. Let i[u/h] be the latest member of Θ, let Θ* 
be Θ \ {i[u/h]}, and let in be a line from which i[u/h] can be obtained by applying IEI (so in 
is┌ui┐, and n ≤ n). By the induction hypothesis, Γn weakly semantically entails in, and thus (5) 
so does Γn  (Γn+1  Θ*). Moreover, (6) Γn  (Γn+1  Θ) weakly semantically entails in+1 (since 
Γn+1  Θ does). By (5) and (6), as I prove in note 50, Γn  (Γn+1  Θ*) weakly semantically en-
tails in+1.50 Let Θ be (Θ*  Γn) \ Γn+1. Then Γn+1  Θ = , Γn+1  Θ (i.e., Γn  (Γn+1  Θ*)) 
weakly semantically entails in+1, and Θ is a set of assumptions earlier than in+1 and is such that, if 
it is non-empty, then its latest member is earlier than the latest member of Θ. 
 

                                                           
49 Concerning IUG, suppose in+1 is of the form ┌ui┐ and can be obtained from Δ = {i[u/h]} by applying once IUG. 
Then ΓΔ = Γ: no constant that occurs in i[u/h] is introduced by IEI, so i[u/h] does not depend on any assumption. Let 
k be any conjunction of all members of Γ. There are declarative formulas p, q, r, and t such that (a) i and k are logi-
cally equivalent to ┌p  !q┐ and ┌r  !t┐ respectively (by the result given at the end of note 46), and (b) h does not 
occur in p, q, r, or t (because h does not occur in any member of Γ or in i, and no replacement rule used in the proof 
of the Canonical Form Lemma introduces new constants). Then i[u/h] is logically equivalent to ┌p[u/h]  !q[u/h]┐, 
and ┌ui┐ is logically equivalent to ┌u(p  !q)┐ and thus also to ┌up  !u(p  q)┐. Since Γ weakly semanti-
cally entails i[u/h], ┌r  !t┐ weakly semantically entails ┌p[u/h]  !q[u/h]┐. Then, by the Equivalence Lemma, 
p[u/h] entails r and ┌p[u/h] & ~q[u/h]┐ entails ┌r & ~t┐. Then, as in classical first-order logic, ┌up┐ entails r and 
┌u(p & ~q)┐ entails ┌r & ~t┐. Then, by the Equivalence Lemma, ┌r  !t┐ weakly semantically entails ┌up 
 !u(p  q)┐. So (k and thus) ΓΔ weakly semantically entails in+1, and the proof of S1 proceeds as in the text. 
50 Note first that h does not occur in any member of Γn  (Γn+1  Θ*): all members of Γn  (Γ  Θ*) are earlier 
than the latest member of Θ (namely the line in which h is introduced by IEI), and if one supposes for reductio that h 
occurs in some member of Θn+1 (i.e., Γn+1 \ Γ), then that member of Θn+1 depends on i[u/h], and thus so does in+1 
(since in+1 depends on every member of Θn+1), whereas in+1 does not depend on any member of Θ (since Γn+1  Θ = 
) and thus does not depend on i[u/h]. Let k be any conjunction of all members of Γn  (Γn+1  Θ*). There are 
declarative formulas p, q, p, q, r, and t such that (a) i, in+1, and k are logically equivalent to ┌p  !q┐, ┌p  !q┐, 
and ┌r  !t┐ respectively (by the result given at the end of note 46), and (b) h does not occur in p, q, p, q, r, or t 
(because no replacement rule used in the proof of the Canonical Form Lemma introduces new constants).Then i[u/h] 
is logically equivalent to ┌p[u/h]  !q[u/h]┐, and ┌ui┐ is logically equivalent to ┌u(p  !q)┐ and thus also to ┌up 
 !u(p & q)┐. Then, by (5), ┌r  !t┐ weakly semantically entails ┌up  !u(p & q)┐. Then, by the Equivalence 
Lemma, (7) ┌up┐ entails r and (8) ┌up & ~u(p & q)┐ entails ┌r & ~t┐. Similarly, by (6), ┌(r  !t) & (p[u/h] 
 !q[u/h])┐ weakly semantically entails ┌p  !q┐. Then, by the Equivalence Lemma and (some of) C2-C15, (9) p 
entails ┌r  p[u/h]┐ and (10) ┌p & ~q┐ entails ┌(r & ~t)  (p[u/h] & ~q[u/h])┐. Then, as in classical first-order logic, 
p entails r (by (7) and (9)) and ┌p & ~q┐ entails ┌r & ~t┐ (by (8) and (10)). Then, by the Equivalence Lemma, ┌r 
 !t┐ weakly semantically entails ┌p  !q┐. So (k and thus) Γn  (Γn+1  Θ*) weakly semantically entails in+1. 
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A.4. Quantified modal imperative logic (QMIL) 
 

The Soundness and Completeness Theorem for QMIL has a formulation identical to the formula-
tion of the corresponding theorem for SMIL in §A.2. The Canonical Form Lemma for QMIL and 
the Replacement Lemma for QMIL have formulations (and proofs) identical to the formulations 
(and the proofs) of the corresponding lemmata for QPIL in §A.3. The Equivalence Lemma for 
QMIL has a formulation identical (and a proof very similar) to the formulation (and the proof) of 
the corresponding lemma for SMIL in §A.2. The proof of soundness concerning strong semantic 
c-validity for QMIL and the proof of completeness for QMIL are very similar to the correspond-
ing proofs for SMIL in § A.2.2. Finally, the proof of soundness concerning weak semantic c-
validity for QMIL deviates from the corresponding proof for SMIL in ways similar to those in 
which the proof of soundness concerning weak semantic validity for QPIL deviates from the cor-
responding proof for SPIL (§A.3). 
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