
 1

NATURAL DEDUCTION

FOR FIRST-ORDER PURE IMPERATIVE LOGIC*

Peter B. M. Vranas

vranas@wisc.edu

University of Wisconsin-Madison

28 April 2023

Abstract. First-Order Pure Imperative Logic (FOPIL) deals with arguments from imperative

premises to imperative conclusions (i.e., pure imperative arguments) that may contain quantifiers

and identity. FOPIL can be used to symbolize, for example, the reasoning from “close the door of

every office in the basement” to “if your office is in the basement, close its door”. I present a natural

deduction system for FOPIL that consists of replacement and inference rules that represent natural

patterns of reasoning. I prove that two imperative formulas are logically equivalent exactly if one

of them can be derived from the other by means of replacement rules, and that a pure imperative

argument is valid exactly if its conclusion can be derived from its premises by means of replacement

or inference rules.

1. Introduction

Here is a logic test for you. Symbolize sentences (1) and (2) below by using the provided symbols,

and then show by natural deduction that the corresponding argument is valid:

 (1) Obey the laws, but if and only if they are just.

 Thus: (2) If a law is not just, do not obey it.

 (Lx: x is a law; Ox: you obey x; Jx: x is just.)

You may complain that this test is unfair: you were never taught how to symbolize quantified

imperative English sentences like (1) or how natural deduction applies to arguments with

quantified imperative premises or conclusions. The complaint is reasonable: these topics are

neglected in the literature.1 In this paper, I take steps to remedy this neglect. I present a natural

deduction system for First-Order Pure Imperative Logic (FOPIL), which deals with arguments

from imperative premises to imperative conclusions (i.e., pure imperative arguments) that may

contain quantifiers and identity. First, I introduce a formal language that can be used to symbolize

quantified imperative English sentences (§2). Second, I introduce interpretations of the formal

language, and I use them to define the logical equivalence of imperative formulas (§3). Third, I

define the validity of a pure imperative argument (§4). Fourth, I provide a set of replacement rules

such that (as I prove in the Appendix) two imperative formulas are logically equivalent exactly if

one of them can be derived from the other by means of the replacement rules (§5). Fifth, I provide

a set of inference rules such that (as I prove in the Appendix) a pure imperative argument is valid

exactly if its conclusion can be derived from its premises by means of the replacement and

inference rules (§6). This paper continues my previous work on imperative logic (Vranas 2008,

* I am grateful to Michael Titelbaum, Berislav Žarnić, and especially Aviv Hoffmann and several anonymous

reviewers for comments, and to Jeremy Avigad, David Makinson, and especially Jörg Hansen for help. Thanks also

to Fabrizio Cariani, Hannah Clark-Younger, Kit Fine, Malcolm Forster, Casey Hart, Daniel Hausman, Blake Myers,

David O’ Brien, Brian Skyrms, and Elliott Sober for interesting questions, and to my mother for typing the bulk of the

paper. Material from this paper was presented at the University of Wisconsin-Madison (Department of Mathematics,

April 2014, and Department of Philosophy, May 2014), the Madison Informal Formal Epistemology Meeting (April

2014), the 12th International Conference on Deontic Logic and Normative Systems (July 2014), the New York

University Workshop “Imperatives and Deontic Modals” (March 2016), and the 13th International Conference on

Deontic Logic and Normative Systems (July 2016).
1 Only Hansen 2014 and Vranas 2019 provide sound and complete natural deduction systems for imperative logic,

but their formal languages do not include quantifiers or identity. See also Fine 2018: 625–6.

 2

2010, 2011, 2013, 2016, 2019); I refer frequently to parts of that work, but I do not presuppose

any familiarity with those parts.

2. Syntax

The (imperative formal) language of FOPIL has the following symbols: the connectives ‘~’, ‘&’,

‘’, ‘→’, and ‘’, the punctuation symbols ‘(’ and ‘)’, the imperative operator ‘!’ (“let it be the

case that”), the quantifiers ‘’ and ‘’, the identity symbol ‘=’, the variables ‘x’, ‘y’, ‘z’, ‘x’, ‘y’,

‘z’, ‘x’, …, the constants ‘a’, ‘b’, ‘c’, ‘d’, ‘a’, …, and, for any n  0, the n-place predicates ‘An’,

‘Bn’, …, ‘Zn’, ‘An’, …. The terms (of the language of FOPIL) are the variables plus the constants.

The atomic formulas are the strings of symbols ┌(f1 = f2)
┐ and ┌Πf1…fn

┐ for any terms f1, …, fn

and any n-place predicate Π. The declarative formulas are all and only those finite strings of

symbols that either are atomic formulas or can be built up from atomic formulas by applying at

least once the following formation rule: if p and q are declarative formulas and u is a variable, then
┌~p┐, ┌(p & q)┐, ┌(p  q)┐, ┌(p → q)┐, ┌(p  q)┐, ┌up┐, and ┌up┐ are declarative formulas.

The imperative formulas are all and only those finite strings of symbols that can be built up from

declarative formulas by applying the following formation rules (R1 must be applied at least once):

(R1) If p is a declarative formula, then ┌!p┐ is an imperative formula.

(R2) If i and j are imperative formulas, then ┌~i┐, ┌(i & j)┐, and ┌(i  j)┐ are also imperative

formulas.

(R3) If p is a declarative formula and i is an imperative formula, then ┌(p → i)┐, ┌(i → p)┐, ┌(p

 i)┐, and ┌(i  p)┐ are imperative formulas.

(R4) If u is a variable and i is an imperative formula, then ┌ui┐ and ┌ui┐ are imperative

formulas.

A formula is either a declarative formula or an imperative formula. It follows from these definitions

that a formula is imperative exactly if it contains at least one occurrence of ‘!’ and is declarative

exactly if it contains no occurrence of ‘!’ (so no formula is both declarative and imperative). A

subformula of a given formula is any string of consecutive symbols of the given formula that is

itself a formula. An occurrence of ‘!’ or of a variable u in a formula φ is bound in φ exactly if it is

also an occurrence of ‘!’ or u in a subformula of φ that begins with ┌u┐ or with ┌u┐, and is free

in φ otherwise. A (declarative, imperative, or atomic) formula is closed (i.e., is a sentence) exactly

if no occurrence of any variable in the formula is free. For simplicity, I usually omit subscripts and

outermost parentheses.

Here are some examples of how imperative English sentences can be symbolized in FOPIL (‘Vx’

stands for “you vaccinate x”, ‘Nx’ for “x is a neonate”, ‘a’ stands for Alice, and so on):

(1) Vaccinate Alice: !Va

(2) Don’t vaccinate Alice: ~!Va

(3) Vaccinate Alice and Brenda: !Va & !Vb

(4) Vaccinate every neonate: x(Nx → !Vx)

(5) Vaccinate only neonates: x(!Vx → Nx)

(6) Vaccinate some neonate: x(Nx → !Vx)

(7) Obey the laws, but if and only if they are just: x(Lx → (!Ox  Jx))

(8) If a law is not just, do not obey it: x(Lx → (~Jx → ~!Ox))

I realize that (6) may look like a mistake, but I discuss it (together with (4)) in §5. Concerning (3),

one might wonder why “vaccinate Alice and Brenda” was symbolized as ‘!Va & !Vb’ instead of

‘!(Va & Vb)’. I reply that either symbolization will do: (a) ‘!Va & !Vb’ symbolizes “let it be the

 3

case that you vaccinate Alice, and let it be the case that you vaccinate Brenda”, (b) ‘!(Va & Vb)’

symbolizes “let it be the case that you vaccinate both Alice and Brenda”, (c) both English sentences

are adequate paraphrases of “vaccinate Alice and Brenda”,2 and (d) it turns out (see §3) that ‘!Va

& !Vb’ and ‘!(Va & Vb)’ are logically equivalent. Similarly, concerning (2), it turns out that ‘~!Va’

(“let it not be the case that you vaccinate Alice”) and ‘!~Va’ (“let it be the case that you don’t

vaccinate Alice”) are logically equivalent.3 Note that ‘~!Va’ is a negation, namely a formula of

the form ┌~┐ (where  is a declarative or imperative formula), but ‘!~Va’ is what I call an

unconditionally prescriptive formula, namely a formula of the form ┌!p┐ (where p is a declarative

formula).

One might wonder why I use a single set of connectives both for declarative and for imperative

logical operations; why not use instead, for example, ‘&’ for declarative conjunction (as in ‘!(Va

& Vb)’) and ‘&i’ for imperative conjunction (as in ‘!Va &i !Vb’)? I reply that the proliferation of

connectives would make the notation cumbersome. Note that English likewise uses a single set of

coordinating conjunctions both for declarative and for imperative (syndetic) coordination, as the

two occurrences of “and” in “if you marry and ovulate, then copulate and procreate” illustrate.

One might argue that this ambiguity is an undesirable feature of English and should be eliminated

in a formal language. I reply that my use of a single set of connectives does not result in any

confusion: it is always clear whether (for example) the ampersand is connecting declarative or

imperative formulas, and semantically (see §3) the ampersand is treated differently in the two

cases.

According to the first formation rule for imperative formulas (R1), if p is any declarative formula,

then ┌!p┐ is an imperative formula. This is as it should be, because prefixing any declarative

English sentence with “let it be the case that” yields an imperative English sentence. For example,

“let it be the case that last week I died” is an imperative English sentence, even if one that would

hardly ever be used (cf. Vranas 2008: 555 n. 17).4 By contrast, certain strings of symbols of FOPIL

are not formulas. (1) If i is an imperative formula, then ┌!i┐ is not a formula. For example, ‘!!Va’

is not a formula. This is as it should be, because “let it be the case that let it be the case that you

vaccinate Alice” is not an English sentence; more generally, prefixing an imperative English

sentence with “let it be the case that” does not yield an English sentence.5 (2) If i and j are

2 Changing slightly the example, one might argue that (1) “let it be the case that Pat vaccinates Alice” is not an

adequate paraphrase of (2) “Pat, vaccinate Alice” because (2) is addressed to Pat but (1) is not. In reply, consider the

following parallel argument concerning declarative sentences: (3) “I predict that Pat will vaccinate Alice” is not an

adequate paraphrase of (4) “Pat, I predict that you will vaccinate Alice” because (4) is addressed to Pat but (3) is not.

This argument fails: (3) is an adequate paraphrase of (4), in the sense that (3) and (4) normally express the same

proposition. Similarly, (1) is an adequate paraphrase of (2), in the sense that⎯in my preferred terminology⎯(1) and

(2) normally express the same prescription (as I argue in Vranas 2008: 554 n. 14, n. 15).
3 Cf. Parsons 2013: 84–5; contrast Clark-Younger & Girard 2013. Imperative English sentences have imperative

negations (which are also imperative English sentences; e.g., an imperative negation of “pay” is “don’t pay”), but one

might argue that they also have permissive negations (which are permissive English sentences; e.g., one might argue

that a permissive negation of “pay” is “you may fail to pay”). I do not deal with permissive sentences in this paper.
4 In case one thinks that R1 is too permissive (because English sentences like “let it be the case that last week I died”

and “let it be the case that the Earth revolves around the Sun” should be excluded from consideration; see, e.g., Rescher

1966: 34), one can (1) designate some predicates as agential and future-directed predicates, (2) designate those

declarative formulas that contain only such predicates as agential and future-directed declarative formulas, and (3)

replace R1 with: (R1) if p is an agential and future-directed declarative formula, then ┌!p┐ is an imperative formula.

(An alternative approach would be to define action formulas, corresponding to actions, and to prefix only action

formulas, not declarative formulas, with ‘!’: see Segerberg 1990.)
5 One might ask: why should English be the adjudicator of a formal language? I answer that I am interested in a formal

language that corresponds to the way we use imperative (and declarative) sentences in English (and other natural

 4

imperative formulas, then ┌(i → j)┐ and ┌(i  j)┐ are not formulas (contrast Castañeda 1975: 113–

5). For example, ‘(!Va → !Vb)’ and ‘(!Va  !Vb)’ are not formulas. This is as it should be, because

“if vaccinate Alice, vaccinate Brenda” (or “vaccinate Alice only if vaccinate Brenda”) and “if and

only if vaccinate Alice, vaccinate Brenda” (or “vaccinate Alice if and only if vaccinate Brenda”)

are not English sentences. (3) If p is a declarative formula and i is an imperative formula, then ┌(p

& i)┐, ┌(i & p)┐,┌(p  i)┐, and ┌(i  p)┐ are not formulas (cf. Vranas 2008: 560 n. 41; contrast Fox

2012: 885–6). For example, ‘(~Va & !Vb)’ is not a formula. This may seem undesirable, because

“although you are not going to vaccinate Alice, at least vaccinate Brenda” is an English sentence.

I reply that nothing important is lost by symbolizing the two parts of the English sentence

separately, as ‘~Va’ and ‘!Vb’.6 Counting ‘(~Va & !Vb)’ as a formula would complicate the syntax

without yielding any commensurate benefit. I discuss this issue further in §5.7

3. Semantics

An interpretation of the language of FOPIL is an ordered triple whose three components are:

• First, a non-empty set (called the domain of the interpretation).

• Second, a function (called the denotation function of the interpretation) that (1) assigns to

every constant a member of the domain (the referent of the constant on the interpretation),

(2) assigns to every sentence letter (i.e., 0-place predicate) either ‘T’ or ‘F’ (the truth value

of the sentence letter on the interpretation), and (3) assigns to every n-place predicate (for

n  1) a set of ordered n-tuples of members of the domain (the extension of the predicate

on the interpretation).

languages). One might claim that (1) “let it be the case that you (will) let it be the case that you vaccinate Alice” is an

English sentence, and one might take this as a reason to count ‘!!Va’ as a formula logically equivalent to ‘!Va’ (cf.

Chellas 1971: 124–5). I agree that (1) is an English sentence, but this is not a reason to count ‘!!Va’ as a formula,

because “let it be the case that”, understood impersonally, does not occur twice in (1): only the first occurrence of

“let” in (1) is impersonal. (Note that “you (will) let it be the case that you vaccinate Alice”—in contrast to “let it be

the case that you vaccinate Alice”—is a declarative English sentence.)
6 One might object that my reply does not work for disjunctions: it will not do to symbolize separately the two parts

of the English sentence (1) “punish Brenda, or I will”. I respond that this English sentence can be paraphrased as (2)

“if you don’t punish Brenda, then I will” (or alternatively as (3) “punish Brenda; if you don’t, then I will”), so to

symbolize the English sentence no disjunction of an imperative with a declarative formula is needed. (Following Starr

(2020: 8), one might argue that, if (1) is felicitously followed by “I don’t care which”, then (1) cannot be paraphrased

as (3). I reply that in such a case (1) can still be paraphrased as (2).)
7 To my knowledge, the imperative operator was introduced into formal languages by Mally (1926; see also

Hofstadter & McKinsey 1939). Two alternatives to R1 have been proposed in the literature. (1) Clarke and Behling

(1998: 282–4; cf. Clarke 1973: 192–3) propose postfixing (instead of prefixing) sentence letters (i.e., 0-place

predicates) with ‘!’ to form imperative sentences. To allow for example ‘(A → B)!’―in addition to ‘A → B!’―to

count as a sentence, generalize the proposal as follows: postfixing any declarative sentence (not just sentence letters)

with ‘!’ yields an imperative sentence. But then is ‘~A!’ a negation or an unconditionally prescriptive sentence?

Resolving the ambiguity by saying that, if  is a sentence, then ┌(~)┐ (instead of ┌~┐) is a sentence (so that

‘~A!’―i.e., ‘(~A!)’ with the outermost parentheses omitted―is a negation but ‘(~A)!’ is an unconditionally

prescriptive sentence) results in a proliferation of parentheses, as for example in ‘(~A)! & (~B)!’—which corresponds

in my notation to ‘!~A & !~B’. Moreover, the proposal introduces an unwelcome asymmetry between modal (and

other sentential) operators, which are prefixed, and the imperative operator, which is postfixed. (2) Gensler (1990:

190, 1996: 182, 2002: 184) proposes underlining sentence letters (instead of prefixing them with ‘!’) to form

imperative sentences. To allow for example ‘A → B’―in addition to ‘A → B’―to count as a sentence, generalize the

proposal as follows: underlining any declarative sentence (not just sentence letters) yields an imperative sentence.

This proposal results in a proliferation of underlining, as for example in ‘(A & (B  C)) → D’―which corresponds in

my notation to ‘!(A & (B  C)) → D’. Moreover, the proposal results in a proliferation of symbols: if sentences are

ordered n-tuples of symbols and ‘A → B’ is a sentence, then ‘A’, ‘→’, and ‘B’ are symbols.

 5

• Third, a three-place relation on declarative sentences (called the favoring relation of the

interpretation) that satisfies the following two conditions. (1) The intensionality condition:

for any declarative sentences p, q, and r, and any declarative sentences p, q, and r
interderivable in CFOL (i.e., classical first-order logic) with p, q, and r respectively, the

ordered triple p, q, r is in (i.e., is a member of) the relation exactly if p, q, r is. (2) The

asymmetry condition: for any declarative sentences p, q, and r, p, q, r and p, r, q are not

both in the relation.

Say that p favors q over r on an interpretation exactly if p, q, r is in the favoring relation of the

interpretation. Then, to say that the favoring relation of any interpretation satisfies the asymmetry

condition is to say that, for any declarative sentences p, q, and r, p does not favor both q over r and

r over q on any interpretation. Informally, a favoring relation corresponds to comparative reasons

(e.g., reasons for you to marry Hugh rather than Hugo), so the asymmetry condition corresponds

to the claim that nothing can be a reason both for q rather than r and for r rather than q. In this

paper, I do not need to engage with metaphysical debates concerning the existence and the nature

of reasons for action (see, e.g., Skorupski 2010): the above formal definition of a favoring relation

suffices for my purposes. The favoring relation is used in §4 to define the validity of pure

imperative arguments.

Declarative sentences are true or false on interpretations, and imperative sentences are satisfied,

violated, or avoided on interpretations. Specifically, for any sentence letter e, any constants h1, …,

hn, any n-place predicate Π (for n  1), any declarative sentences p and q, any imperative sentences

i and j, and any interpretation m:

Truth and falsity of a declarative sentence on an interpretation

(D1) e is true on m iff (i.e., exactly if) m assigns ‘T’ to e.

(D2) ┌h1 = h2
┐ is true on m iff the referent of h1 on m is the same as the referent of h2 on m.

(D3) ┌Πh1…hn
┐ is true on m iff the ordered n-tuple whose components are the referents of

h1, …, hn on m (in that order) is a member of the extension of Π on m.

(D4) ┌~p┐ is true on m iff p is not true on m.

(D5) ┌p & q┐ is true on m iff both p and q are true on m.

(D6) ┌p  q┐ is true on m iff ┌~(~p & ~q)┐ is true on m.

(D7) ┌p → q┐ is true on m iff ┌~p  q┐ is true on m.

(D8) ┌p  q┐ is true on m iff ┌(p → q) & (q → p)┐ is true on m.

(D9) p is false on m iff p is not true on m.

Satisfaction, violation, and avoidance of an imperative sentence on an interpretation

(I1) ┌!p┐ is (a) satisfied on m iff p is true on m, and is (b) violated on m iff p is false on m.

(Informally: “vaccinate Alice” is satisfied iff you vaccinate Alice, and is violated iff you do not

vaccinate Alice.)

(I2) ┌~i┐ is (a) satisfied on m iff i is violated on m, and is (b) violated on m iff i is satisfied on

m. (Informally: “don’t vaccinate Alice” is satisfied iff you do not vaccinate Alice, namely iff

“vaccinate Alice” is violated, and is violated iff you vaccinate Alice, namely iff “vaccinate

Alice” is satisfied.)

(I3) ┌i & j┐ is (a) satisfied on m iff (i) i is satisfied and j is not violated on m or (ii) j is satisfied

and i is not violated on m, and is (b) violated on m iff at least one of i and j is violated on m.

(Note that ┌i & j┐ can be satisfied on m even if not both i and j are satisfied on m. Informally:

“if you vaccinate Alice, vaccinate Brenda, and if you don’t vaccinate Alice, vaccinate Brenda”

is equivalent to “vaccinate Brenda (regardless of whether you vaccinate Alice)”, so it is satisfied

 6

if you vaccinate Brenda but not Alice and thus if “if you vaccinate Alice, vaccinate Brenda” is

not satisfied (see I5 below).)

(I4) ┌i  j┐ is satisfied (or violated) on m iff ┌~(~i & ~j)┐ is satisfied (or violated) on m.

(Informally: “vaccinate Alice or Brenda” is equivalent to the negation of “vaccinate neither

Alice nor Brenda”.)

(I5) ┌p → i┐ is (a) satisfied on m iff both p is true on m and i is satisfied on m, and is (b) violated

on m iff both p is true on m and i is violated on m. (Informally: “if you vaccinate Alice, vaccinate

Brenda” is satisfied iff you vaccinate both Alice and Brenda, and is violated iff you vaccinate

Alice but not Brenda.)

(I6) ┌i → p┐ is satisfied (or violated) on m iff ┌~p → ~i┐ is satisfied (or violated) on m.

(Informally: “vaccinate Alice only if you vaccinate Brenda” is equivalent to “if you don’t

vaccinate Brenda, don’t vaccinate Alice”.)

(I7) ┌p  i┐ is satisfied (or violated) on m—and the same holds for ┌i  p┐—iff ┌(p → i) & (i

→ p)┐ is satisfied (or violated) on m. (Informally: “if and only if you vaccinate Alice, vaccinate

Brenda”—i.e., “vaccinate Brenda if and only if you vaccinate Alice”—is equivalent to

“vaccinate Brenda if you vaccinate Alice, and vaccinate Brenda only if you vaccinate Alice”.)

(I8) i is avoided on m iff i is neither satisfied nor violated on m. (Informally: “vaccinate Alice”

is avoided iff you neither vaccinate Alice nor do not vaccinate Alice, namely never, and “if you

vaccinate Alice, vaccinate Brenda” is avoided iff you neither both vaccinate Alice and Brenda

nor vaccinate Alice but not Brenda, namely iff you do not vaccinate Alice.)

See Vranas 2008: 532–45 for a detailed defense of I1–I8. There are also four rules that deal with

quantifiers. To formulate them, I introduce first some notation and terminology. Take any variable

u, any constant h, any member o of the domain of m, and any formula φ in which no occurrence

of any variable different from u is free. Let φ[u/h] be the sentence that results from replacing in φ

every occurrence of u that is free in φ with h. (If φ is a sentence, then φ[u/h] is just φ.) Let m[h/o]

be the interpretation that results from replacing in m the referent of h with o. (So m and m[h/o]

have the same domain and favoring relation, and their denotation functions differ only in the

referent they assign to h. If the referent of h on m is o, then m[h/o] is just m.) If φ is a declarative

formula, say that o verifies φ on m exactly if, for any (equivalently: for some) constant h that does

not occur in φ, φ[u/h] is true on m[h/o]. If φ is an imperative formula, say that o satisfies φ on m

exactly if, for any (equivalently: for some) constant h that does not occur in φ, φ[u/h] is satisfied

on m[h/o], and define similarly what it is for o to violate or to avoid φ on m. Letting Δ be the

domain of m, here are the four rules that deal with quantifiers:

(D10) ┌up┐ is true on m iff every member of Δ verifies p on m.

(D11) ┌up┐ is true on m iff some member of Δ verifies p on m.

(I9) ┌ui┐ is (a) satisfied on m iff both some member of Δ satisfies i on m and no member of Δ

violates i on m, and is (b) violated on m iff some member of Δ violates i on m.

(I10) ┌ui┐ is (a) satisfied on m iff some member of Δ satisfies i on m, and is (b) violated on m

iff both some member of Δ violates i on m and no member of Δ satisfies i on m.

In these four rules (in contrast to the previous rules), p and i need not be sentences: they must be

formulas such that ┌up┐, ┌up┐, ┌ui┐, and ┌ui┐ are sentences (i.e., in these four rules, no

occurrence of any variable different from u is free in p or in i). See Vranas 2008: 549–50 for a

defense of I9 and I10 based on understanding universal and existential quantification as

generalizations of conjunction and disjunction respectively. By I8–I10, ┌ui┐ is avoided on m

exactly if ┌ui┐ is avoided on m, and also exactly if every member of Δ avoids i on m.

 7

A contradiction is either a declarative sentence that is false on every interpretation (a declarative

contradiction) or an imperative sentence that is violated on every interpretation (an imperative

contradiction). Sentences  and  are logically equivalent exactly if either (1) they are both

declarative and they have the same truth value on every interpretation (i.e., for any interpretation

m,  and  are either both true on m or both false on m; equivalently,  is true on m exactly if 

is true on m) or (2) they are both imperative and they have the same “satisfaction value” on every

interpretation (i.e., for any interpretation m,  and  are either both satisfied on m or both violated

on m or both avoided on m; equivalently,  is satisfied on m exactly if  is satisfied on m, and 

is violated on m exactly if  is violated on m).8 Moreover, one can define logical equivalence

between formulas that need not be sentences: if φ and ψ are (either both declarative or both

imperative) formulas and u1, …, un are the only variables that have at least one free occurrence in

 or in , then φ and ψ are logically equivalent exactly if, for any (equivalently: for some) distinct

constants h1, …, hn that occur neither in φ nor in ψ, the sentences φ[u1/h1, …, un/hn] and ψ[u1/h1, …,

un/hn] are logically equivalent (where φ[u1/h1, …, un/hn] is the sentence that results from replacing

in φ every occurrence of u1 that is free in φ with h1, and so on—and similarly for ψ). For example,

‘Va  ~Va’ is logically equivalent to ‘x = x’ (although the former formula is a sentence but the

latter one is not).

4. Strong and weak validity

A pure imperative argument is an ordered pair whose first component is a non-empty finite set of

imperative sentences (the premises of the argument) and whose second component is an imperative

sentence (the conclusion of the argument). Building on previous work, I say that (roughly) a pure

imperative argument is valid when, on every interpretation, its conclusion is “supported” by

everything that supports its premises. Also building on previous work (Vranas 2011, 2016, 2019),

I distinguish strong from weak support—and, correspondingly, strong from weak validity—as

follows:

DEFINITION 1. For any declarative sentence p, any imperative sentence i, and any interpretation m:

(1) p strongly supports i on m exactly if (a) p is true on m, (b) i is not a contradiction, and (c)

for any declarative sentences q and r that are not both contradictions, if (i) i is satisfied on every

interpretation on which q is true and (ii) i is violated on every interpretation on which r is true,

then p favors q over r on m;

(2) p weakly supports i on m exactly if p strongly supports on m some imperative sentence j

such that (a) i is satisfied on every interpretation on which j is satisfied and (b) i is avoided on

all and only those interpretations on which j is avoided.

DEFINITION 2. A pure imperative argument is (1) strongly valid (i.e., its premises strongly entail

its conclusion) exactly if, for any interpretation m, every declarative sentence that strongly

supports on m every (equivalently: some) conjunction of all premises of the argument also

strongly supports on m the conclusion of the argument, and is (2) weakly valid (i.e., its premises

weakly entail its conclusion) exactly if, for any interpretation m, every declarative sentence that

weakly supports on m every (equivalently: some) conjunction of all premises of the argument

also weakly supports on m the conclusion of the argument.

8 Now it can be seen that, as stated in §2, ‘!Va & !Vb’ and ‘!(Va & Vb)’ are logically equivalent: for any interpretation

m, ‘!Va & !Vb’ is satisfied on m exactly if both ‘!Va’ and ‘!Vb’ are satisfied on m (by I3), and thus exactly if both ‘Va’

and ‘Vb’ are true on m (by I1), and thus exactly if ‘Va & Vb’ is true on m (by D5), and thus exactly if ‘!(Va & Vb)’ is

satisfied on m (by I1)—and similarly for violation on m.

 8

Defending these definitions lies beyond the scope of this paper: I have extensively defended in

previous work (Vranas 2011, 2016) an account of validity on which the definitions are based, and

I have compared that account to alternative accounts in the literature (e.g., Charlow 2014;

Kaufmann 2012; Parsons 2013; Segerberg 1990). Informally, the distinction between strong and

weak validity captures a conflict of intuitions about whether, for example, “vaccinate Alice” entails

“vaccinate or kill Alice”: one can show that the pure imperative argument {!Va}, !(Va  Ka) is

weakly but not strongly valid. (This argument corresponds to “Ross’s paradox”: see Ross 1941.)

5. Replacement derivations

In this section, I introduce a set of replacement rules such that two imperative formulas are

logically equivalent exactly if one of them can be derived from the other by means of these

replacement rules.

DEFINITION 3. For any imperative formulas i and j, a replacement derivation of j from i is a

finite sequence of imperative formulas (called the lines of the derivation) such that (1) the last

line is j, (2) the first line is i, and (3) each line except the first can be obtained from the previous

line by applying once a replacement rule from Table 1.

Name of rule and abbreviation Rule

Declarative Replacement DR If p ⟛CFOL q, then p ⧓ q

Transposition9 TR i → p ⧓ ~p → ~i

Negated Conditional NC ~(p → i) ⧓ p → ~i

Exportation EX p → (q → i) ⧓ (p & q) → i

Commutativity CO p  i ⧓ i  p

Material Equivalence ME p  i ⧓ (p → i) & (i → p)

Absorption AB p → !q ⧓ p → !(p & q)

Tautologous Antecedent TA (p  ~p) → i ⧓ i

Unconditional Negation UN ~!p ⧓ !~p

Imperative Conjunction IC (p → !q) & (p → !q) ⧓ (p  p) → !((p → q) & (p → q))

Imperative Disjunction ID (p → !q)  (p → !q) ⧓ (p  p) → !((p & q)  (p & q))

Imperative Quantification IQ u(p → !q) ⧓ up → !u(p → q)

 u(p → !q) ⧓ up → !u(p & q)

Table 1. Replacement rules.

In Table 1, and in what follows, ‘p ⟛CFOL q’ abbreviates “p and q are interderivable in CFOL”,

and for any formulas  and , ‘ ⧓ ’ abbreviates “from any imperative formula k, one can obtain

k(/) if  is a subformula of k, and one can obtain k(/) if  is a subformula of k”—where

k(/) is any formula that results from replacing in k at least one occurrence of  with . For

simplicity, I omit corner quotes in tables.

9 One could have the following as a second part of Transposition: ┌p → i┐ ⧓ ┌~i → ~p┐. It is sometimes claimed in

the literature, however, that imperative contraposition (or transposition) fails because, for example, “if you killed,

confess” is not equivalent to “if you don’t confess, let it not be the case that you killed”. I reply that this is not really

an instance of contraposition: the contrapositive of ┌ → ┐ is ┌~ → ~┐, so the contrapositive of ‘K → !C’ (“if

you killed, confess”) is ‘~!C → ~K’ (“don’t confess only if you didn’t kill”; cf. Castañeda 1977: 780; Fox 2012: 892),

not ‘~C → ~!K’ (“if you don’t confess, let it not be the case that you killed”). This is an example of how symbolization

in an imperative formal language clears up a not uncommon confusion in the literature. I have been myself guilty of

that confusion: in light of the above considerations, I renounce my definition of a contrapositive in Vranas 2011: 404

n. 45. See Vranas 2011: 404–5 n. 46 for references to imperative contraposition in the literature.

 9

Because the replacement rules are symmetric, there is a replacement derivation of j from i exactly

if there is a replacement derivation of i from j. In the Appendix, I prove the following results: for

any imperative formulas i and j, (a) if i ⧓ j according to a replacement rule in Table 1, then i is

logically equivalent to j, and (b) i is logically equivalent to j exactly if there is a replacement

derivation of j from i.

All rules in Table 1 except Imperative Quantification (IQ) were also given in Vranas 2019.10

Concerning IQ, note that, in the imperative formula ‘x(Nx → !Vx)’, the only occurrence of ‘!’ is

bound (see §2). Since IQ (like every other rule in Table 1) corresponds to a logical equivalence,

‘x(Nx → !Vx)’ is logically equivalent to ‘xNx → !x(Nx → Vx)’. But in the latter imperative

formula, the only occurrence of ‘!’ is free. It turns out that this holds in general: as I prove in the

Appendix, for any imperative formula i, there are declarative formulas p and q such that i is

logically equivalent to ┌p → !q┐, so every imperative formula is logically equivalent to some

imperative formula (or other) in which no occurrence of ‘!’ is bound (since the only occurrence of

‘!’ in ┌p → !q┐ is free). It follows that, if one modified my definition of a formula in §2 by dropping

the formation rule R4, there would still be enough formulas to symbolize every English sentence

that can be symbolized in FOPIL. A grade of “imperative involvement” analogous to the “third

grade of modal involvement” (Quine 1953) is redundant in FOPIL.

Going back now to some symbolizations I gave in §2, one might wonder why “vaccinate every

neonate” was symbolized as ‘x(Nx → !Vx)’—equivalently, as ‘xNx → !x(Nx → Vx)’—instead

of ‘!x(Nx → Vx)’. It turns out that ‘!x(Nx → Vx)’ is not logically equivalent to ‘xNx → !x(Nx

→ Vx)’: if there are no neonates, then ‘!x(Nx → Vx)’⎯which symbolizes (1) “let it be the case

that you vaccinate every neonate”⎯is satisfied but ‘xNx → !x(Nx → Vx)’⎯which symbolizes

(2) “if there are any neonates, let it be the case that you vaccinate every neonate”⎯is avoided. (By

contrast, the declarative sentences ‘x(Nx → Vx)’ and ‘xNx → x(Nx → Vx)’ are logically

equivalent.) The distinction between (1) and (2) captures a subtle ambiguity in the English sentence

(3) “vaccinate every neonate” (cf. Ludwig 1997: 39), an ambiguity that can be revealed by asking:

what if there are no neonates? In contexts in which the answer is that the command expressed by

(3) is then trivially satisfied, (3) can be paraphrased as (1) and symbolized as ‘!x(Nx → Vx)’; but

in contexts in which the answer is that the command expressed by (3) is then avoided, (3) can be

paraphrased as (2) and symbolized either as ‘xNx → !x(Nx → Vx)’ or, equivalently, as ‘x(Nx

→ !Vx)’.

Similar remarks apply to (4) “vaccinate some neonate”: this was symbolized in §2 as ‘x(Nx

→ !Vx)’—which is logically equivalent to ‘xNx → !x(Nx & Vx)’—but can alternatively be

symbolized as ‘!x(Nx & Vx)’ depending on the context (i.e., depending on whether the command

expressed by (4) is taken to be avoided or trivially satisfied if there are no neonates). One might

argue that both symbolizations are inadequate: neither of them appears to entail ‘xNx’, but one

might argue that (4) “vaccinate some neonate” can be paraphrased as (5) “there are neonates;

10 Note a disanalogy between declarative and imperative logic concerning Negated Conditional (NC): there is no

general logical equivalence between negations of imperative conditionals and imperative conjunctions analogous to

the general declarative logical equivalence between ┌~(p → q)┐ and ┌p & ~q┐. On the contrary, negating a conditional

with an imperative consequent amounts to negating the consequent: informally, “if you vaccinate Alice, don’t

vaccinate Brenda” negates “if you vaccinate Alice, vaccinate Brenda”. Note that ‘(Va → !Vb) & (Va → !Vb)’, which

(as one can show) is logically equivalent to ‘Va → !(Vb & Vb)’, is not an imperative contradiction, namely an

imperative sentence that is violated on every interpretation (cf. Charlow 2014: 628), but is instead what may be called

an imperative conditional contradiction, namely an imperative sentence that is non-satisfied (i.e., violated or avoided)

on every interpretation.

 10

vaccinate at least one of them” and thus appears to entail “there are neonates”. In reply, I do not

need to take a stand on whether (4) can be paraphrased as (5): if it can, just symbolize (4) in the

same way as (5). But how should (5) be symbolized? One might claim that it should be symbolized

as ‘x(Nx & !Vx)’, which is not a formula of FOPIL (cf. Clarke 1973: 201; Clarke & Behling 1998:

293; Gensler 1990: 192, 1996: 186, 2002: 185). So one might claim that ‘x(Nx & !Vx)’ should be

a formula, and one might propose modifying my definition of a formula by adopting the following

additional formation rule: if p is a declarative formula and i is an imperative formula, then ┌(p &

i)┐ and ┌(i & p)┐ are formulas. Addressing a similar point in §2, I replied in effect that such a rule

is unnecessary because, for example, nothing important is lost by symbolizing the two parts of

“although you are not going to vaccinate Alice, at least vaccinate Brenda” separately, as ‘~Va’ and

‘!Vb’. In the present context, however, one might find such a reply unsatisfactory: one might argue

that the two parts of (5) “there are neonates; vaccinate at least one of them” cannot be symbolized

separately because the second part (“vaccinate at least one of them”) “is not by itself a complete

imperative [sentence], since it does not contain the referent of the pronoun [‘them’]” (Castañeda

1963: 228–9). I reply that (5) can be paraphrased as “there are neonates; if there are neonates,

vaccinate at least one of them”, so the second part of (5) can be symbolized separately as ‘xNx

→ !x(Nx & Vx)’ (equivalently, as ‘x(Nx → !Vx)’).11 I conclude that the proposed additional

formation rule is unnecessary.12

11 Similar remarks apply to more complex cases; for example, the English sentence “there is only one neonate;

vaccinate it” can be paraphrased as “there is only one neonate; if there is only one neonate, vaccinate it”, so the second

part of the former English sentence can be symbolized separately as ‘x((Nx & y(Ny → x = y)) → !Vx)’ (“for any x,

if x is the only neonate, vaccinate x”)—which turns out to be logically equivalent to ‘x((Nx & y(Ny → x = y))

→ !Vx)’ (“for some x, if x is the only neonate, vaccinate x”).
12 One might grant that the proposed rule is unnecessary but might argue that the rule is desirable because it makes

simpler symbolizations available: symbolizing “there is only one neonate; vaccinate it” as ‘x((Nx & y(Ny → x =

y)) & !Vx)’ would be simpler than symbolizing it, as I propose (see note 11), in terms of both a declarative and an

imperative sentence. I reply that adopting the proposed rule would create considerable complications. First, would ┌(p

& i)┐ be (1) a declarative but not an imperative formula, (2) an imperative but not a declarative formula, (3) both a

declarative and an imperative formula, or (4) neither a declarative nor an imperative formula? Against (1): if, for

example, ‘~Va & !Vb’ is a declarative but not an imperative formula (and sentence), then it seems unavoidable to say

that ‘~Va & !Vb’ is true on all and only those interpretations on which ‘~Va’ is true, and then it seems unavoidable to

say that ‘~Va & !Vb’ is logically equivalent to ‘~Va’—an absurd result. Against (2): if ‘~Va & !Vb’ is an imperative

but not a declarative formula, then it seems unavoidable to say that ‘~Va & !Vb’ is satisfied (or violated) on all and

only those interpretations on which ‘!Vb’ is satisfied (or violated), and then it seems unavoidable to say that ‘~Va &

!Vb’ is logically equivalent to ‘!Vb’—an absurd result. Against (3): if ‘~Va & !Vb’ is both a declarative and an

imperative formula, then (assuming that imperative formulas are not true or false and that declarative formulas are not

satisfied, violated, or avoided) ‘~Va & !Vb’ is not true or false and is not satisfied, violated, or avoided on any

interpretation, and then I do not see what kinds of semantic properties ‘~Va & !Vb’ could have, so I do not see how it

could play any non-trivial role in a definition of (semantic) validity. In favor of (4): one could say that ‘~Va & !Vb’ is

a mixed (i.e., neither a declarative nor an imperative) formula, which is (a) true on all and only those interpretations

on which ‘~Va’ is true and is (b) satisfied (or violated) on all and only those interpretations on which ‘!Vb’ is satisfied

(or violated). To say that logical equivalence applies to mixed sentences without saying that ‘~Va & !Vb’ is logically

equivalent to ‘~Va’ or to ‘!Vb’, one could modify the definition of logical equivalence in §3 as follows: sentences φ

and ψ are logically equivalent only if either they are both declarative or they are both imperative or they are both

mixed, and mixed sentences φ and ψ are logically equivalent exactly if, for any interpretation m, φ is true on m exactly

if ψ is true on m, φ is satisfied on m exactly if ψ is satisfied on m, and φ is violated on m exactly if ψ is violated on m.

One could further say that, if φ is any formula and ψ is a mixed formula, then ┌(φ & ψ)┐ and ┌(ψ & φ)┐ are mixed

formulas. To my mind, the complications introduced by this proposal are not worth the benefit of having simpler

symbolizations. (Moreover, note that this proposal could not be extended to also recognize ‘~Va  !Vb’ as a mixed

formula, because then it would seem unavoidable to say that ‘~Va  !Vb’ is logically equivalent to ‘~Va & !Vb’—

unless one considerably modified the semantics, as for example Starr 2020 does.) Note finally that even more

complications arise if p and i in the proposed formation rule are formulas that are not sentences, so it is unpromising

 11

6. Strong and weak derivations

In this section, I introduce a set of inference rules such that a pure imperative argument is weakly

valid exactly if its conclusion can be derived from its premises by means of those rules—possibly

together with the replacement rules I introduced in §5—and a similar result holds for strong

validity.

DEFINITION 4. For any non-empty finite set  of imperative sentences and any imperative

sentence i:

(1) A strong derivation of i from  is a finite sequence of imperative sentences (called the lines

of the derivation) such that (a) the last line is i and (b) each line either is a conjunction of all

members of  or can be obtained from a previous line by applying once either a replacement

rule from Table 1 or a pure imperative inference rule (other than ICE) from Table 2.

(2) A weak derivation of i from  is a finite sequence of imperative sentences (called the lines

of the derivation) such that (a) the last line is i and (b) each line either is (a member or) a

conjunction of members of  or can be obtained from a previous line by applying once either a

replacement rule from Table 1 or a pure imperative inference rule from Table 2.

Name of rule and abbreviation Rule

Ex Contradictione Quodlibet ECQ !(p & ~p)  i

Declarative Antecedent Introduction DAI i  p → i

Imperative Conjunction Elimination ICE i & j  i

Table 2. Pure imperative inference rules.

In Table 2, for any imperative sentences i and j, ‘i  j’ abbreviates “from i, one can obtain j”. It

follows from Definition 4 that every strong derivation is a weak derivation. Moreover, since

replacement rules may be applied in strong derivations, every replacement derivation of an

imperative sentence j from an imperative sentence i is also a strong derivation of j from i (strictly

speaking, from {i}). Note two differences between weak and strong derivations. First, all pure

imperative inference rules in Table 2 may be applied in a weak derivation, but Imperative

Conjunction Elimination (ICE) may not be applied in a strong derivation. The motivation behind

this difference is that, for example, the argument {!Va & !Vb}, !Va) is (weakly but) not strongly

valid (see Vranas 2011: 411, 416), but strong derivations are intended to correspond to strong

validity. Second, any single premise can be the first line of a weak derivation, but no single premise

(as opposed to a conjunction of all premises) can be the first line of a strong derivation (unless

there is only one premise). The motivation behind this difference is that, for example, the argument

{!Va, !Vb}, !Va is (weakly but) not strongly valid (see Vranas 2011: 397).

In the Appendix, I prove that a pure imperative argument is strongly (or weakly) valid exactly if

there is a strong (or weak) derivation of its conclusion from the set of its premises. In other words,

the natural deduction system that I propose in this paper is sound and complete. This is the main

result of this paper.

All three rules in Table 2 were also given in Vranas 2019, which proposed a sound and complete

natural deduction system for Sentential Pure Imperative Logic: interestingly, no new pure

imperative inference rules are needed when one introduces quantifiers and identity. Nevertheless,

to claim—as Clarke (1973: 201; Clarke & Behling 1998: 293) in effect does—that ‘~Va & !Vb’ is not a formula but

‘x(Nx & !Vx)’ is nevertheless a formula.

 12

one can show that an imperative analog of classical Universal Instantiation holds in FOPIL. For

example, here is a weak derivation of ‘Nb → !Vb’ from ‘x(Nx → !Vx)’:

1. x(Nx → !Vx) Premise

2. xNx → !x(Nx → Vx) 1 Imperative Quantification

3. (Nb  xNx) → !x(Nx → Vx) 2 Declarative Replacement

4. (Nb  xNx) → !((Nb → Vb) & x(Nx → Vx)) 3 Declarative Replacement

5. (Nb → !(Nb → Vb)) & (xNx → !x(Nx → Vx)) 4 Imperative Conjunction

6. Nb → !(Nb → Vb) 5 Imperative Conjunction Elimination

7. Nb → !(Nb & (Nb → Vb)) 6 Absorption

8. Nb → !(Nb & Vb) 7 Declarative Replacement

9. Nb → !Vb 8 Absorption

Similarly, an imperative analog of classical Existential Generalization holds in FOPIL: for

example, one can show that there is a weak derivation of ‘x!Vx’ from ‘!Vb’. Note that the premise

‘!Vb’ is an unconditionally prescriptive sentence (i.e., a sentence of the form ┌!p┐); by contrast,

from a conditionally prescriptive sentence like ‘Nb → !Vb’ one cannot derive (at all in FOPIL)

‘x(Nx → !Vx)’. This is because existential generalization generalizes disjunctive addition, but

imperative disjunctive addition fails in general (although it works for unconditionally prescriptive

sentences). Informally: “if you marry, procreate” does not entail “if you marry, procreate, or if you

don’t marry, procreate”—which is equivalent to “procreate”. This is a significant disanalogy

between imperative and classical declarative logic.

Appendix: Theorems and proofs

To prove my main result, namely the soundness and completeness of the natural deduction system

that I proposed in this paper, I prove first a series of lemmas.

LEMMA 1 (SEMANTIC REPLACEMENT). For any imperative formula i and any formulas  and , if

 is a subformula of i and    (i.e.,  is logically equivalent to ), then i  i(/)—where

i(/) is any formula that results from replacing in i at least one occurrence of  with .

PROOF. The proof is by induction on the number of occurrences of connectives or quantifiers in i.

For the base step, take any i in which no connectives or quantifiers occur. Then, for some atomic

formula p, i is ┌!p┐. So if, for some q, p  q, then i(p/q), namely ┌!q┐, is logically equivalent to
┌!p┐: if u1, …, un are the only variables that have at least one free occurrence in p or in q, then for

any distinct constants h1, …, hn that occur neither in p nor in q, and for any interpretation m,
┌!p[u1/h1, …, un/hn]

┐ is satisfied on m iff p[u1/h1, …, un/hn] is true on m (by I1) iff q[u1/h1, …,

un/hn] is true on m (since p  q) iff ┌!q[u1/h1, …, un/hn]
┐ is satisfied on m (and similarly for

violation). For the inductive step, take any natural number n and suppose (induction hypothesis)

that, for any i with at most n occurrences of connectives or quantifiers, and any  and  such that

 is a subformula of i and   , i  i(/). To complete the proof, take any i with at most n +

1 occurrences of connectives or quantifiers and any  and  such that  is a proper subformula of

i (the case in which  is i is trivial) and   . To prove that i  i(/), there are ten cases to

consider, depending on whether i is ┌!p┐, ┌~j┐, ┌j & k┐, ┌j  k┐, ┌p → j┐, ┌j → p┐, ┌p  j┐, ┌j 

p┐, ┌uj┐, or ┌uj┐. For the first eight cases, the proof parallels the proof of Theorem 3.1 in Vranas

2019, so consider the last two cases: suppose i is ┌uj┐ or ┌uj┐. Then  is a subformula of j, and

i(/) is ┌uj┐ or ┌uj┐, where j is j(/ψ). By the induction hypothesis, j  j. Suppose u1, …,

un are the only variables that have at least one free occurrence in i or in i(/), and take any distinct

 13

constants h1, …, hn that occur neither in i nor in i(/). Let k be j[u1/h1, …, un/hn], and let k be

j[u1/h1, …, un/hn]. Then i  i(/) iff (1) ┌uk┐  ┌uk┐. But (1) holds (by I9 and I10) because,

for any interpretation m and any member o of the domain of m, o satisfies k on m iff o satisfies k
on m (and similarly for violating and avoiding): if o satisfies k on m, then, for any constant h that

occurs neither in k nor in k, k[u/h] is satisfied on m[h/o], so k[u/h] is also satisfied on m[h/o] (since

j  j, k[u/h] is j[u/h, u1/h1, …, un/hn], and k[u/h] is j[u/h, u1/h1, …, un/hn]), and thus o satisfies k
on m (and, similarly, vice versa).

LEMMA 2 (CANONICAL FORM). For any imperative formula i, there are declarative formulas p and

q such that i ⟛ ┌p → !q┐ (i.e., there is a replacement derivation of ┌p → !q┐ from i).

PROOF. The proof is by induction on the number of occurrences of connectives or quantifiers in i.

For the base step, take any i in which no connectives or quantifiers occur. Then, for some atomic

formula p, i is ┌!p┐, and then, by TA, i ⟛ ┌(p  ~p) → !p┐. For the inductive step, take any natural

number n and suppose (induction hypothesis) that, for any i with at most n occurrences of

connectives or quantifiers, there are p and q such that i ⟛ ┌p → !q┐. To complete the proof, take

any i with at most n + 1 occurrences of connectives or quantifiers. There are the same ten cases to

consider as in the proof of Lemma 1. For the first eight cases, the proof parallels the proof of

Theorem 4.4 in Vranas 2019, so consider the last two cases: suppose i is ┌uj┐ or ┌uj┐. Then, by

the induction hypothesis, j ⟛┌p → !q┐, and then, by IQ, i ⟛┌up → !u(p → q)┐ or i ⟛ ┌up

→ !u(p & q)┐.

LEMMA 3 (SOUNDNESS OF REPLACEMENT RULES). For any imperative formulas i and j, if i ⧓ j

according to a replacement rule in Table 1, then i  j.

PROOF. I examine only IQ: for the soundness of the remaining replacement rules, see the proof of

Theorem 4.2 in Vranas 2019. Let i be ┌u(p → !q)┐, and let j be ┌up → !u(p & q)┐. Suppose

u1, …, un are the only variables that have at least one free occurrence in i or in j, and take any

distinct constants h1, …, hn that occur neither in i nor in j. Let p be p[u1/h1, …, un/hn], and let q

be q[u1/h1, …, un/hn]. Let i be ┌u(p → !q)┐, and let j be ┌up → !u(p & q)┐. Then i  j iff

(1) i  j. But (1) holds because, for any interpretation m: by I5 and I1, j is satisfied on m iff both
┌up┐ and ┌u(p & q)┐ are true on m; i.e., by D11, iff (2) some member of the domain Δ of m

verifies ┌p & q┐ on m (and (3) some member of Δ verifies p on m, but (3) follows from (2)); i.e.,

iff, for some member o of Δ and any constant h that does not occur in ┌p & q┐, ┌p[u/h] & q[u/h]┐

is true—equivalently: ┌p[u/h] → !q[u/h]┐ is satisfied—on m[h/o]; i.e., iff some member of Δ

satisfies ┌p → !q┐ on m; i.e., by I10, iff i is satisfied on m (and similarly for violation on m). One

can similarly show that ┌u(p → !q)┐  ┌up → ! u(p → q)┐.

THEOREM 1 (SOUNDNESS AND COMPLETENESS FOR REPLACEMENT DERIVATIONS). For any

imperative formulas i and j, i  j if (soundness) and only if (completeness) i ⟛ j.

PROOF OF SOUNDNESS. Suppose i ⟛ j. The proof is by induction on the number of lines of a

replacement derivation. For the base step, suppose there is a one-line replacement derivation of j

from i. Then i is the same formula as j and thus i  j. For the inductive step, take any non-zero

natural number n and suppose (induction hypothesis) that, if there is a replacement derivation with

n lines of j from i, then i  j. To complete the proof, take any replacement derivation with n + 1

lines of j from i. Then j can be obtained from the n-th line k by applying once a replacement rule,

so j is k(/), where  is a subformula of k and  is a formula such that  ⧓ . By the induction

hypothesis, (1) i  k. By Lemma 3,    if  and  are imperative formulas; if they are

 14

declarative, then j can be obtained from k by applying once DR, so  ⟛CFOL  and thus again 

 . By Lemma 1, k  k(/); i.e., (2) k  j. By (1) and (2), i  j.

PROOF OF COMPLETENESS. Suppose i  j. By Lemma 2, (1) i ⟛ ┌p → !q┐ and thus (by soundness)

i  ┌p → !q┐, and (2) j ⟛ ┌p → !q┐ and thus j  ┌p → !q┐. Then (3) ┌p → !q┐  ┌p → !q┐.

Then one can show (see the proof of Theorem 4.5 in Vranas 2019) that p  p, so (4) p ⟛CFOL p,

and that ┌p & q┐  ┌p & q┐, so (5) ┌p & q┐ ⟛CFOL ┌p & q┐. Then: i ⟛ ┌p → !q┐ (by (1)), so i

⟛ ┌p → !(p & q)┐ (by AB), so i ⟛ ┌p → !(p & q)┐ (by (4) and DR), so i ⟛ ┌p→ !(p & q)┐

(by (5) and DR), so i ⟛ ┌p → !q┐ (by AB), so finally i ⟛ j (by (2)).

COROLLARY 1 (OF LEMMA 2 AND THEOREM 1). For any imperative formula i, there are declarative

formulas p and q such that i  ┌p → !q┐.

LEMMA 4 (SEMANTIC EQUIVALENCE). For any imperative sentences i and j: (1) i strongly entails j

iff either i is a contradiction or both (a) i is satisfied on every interpretation on which j is satisfied

and (b) i is violated on every interpretation on which j is violated; (2) i weakly entails j iff both (a)

j is avoided on every interpretation on which i is avoided and (b) i is violated on every

interpretation on which j is violated.

I omit the proof, because it parallels the proof of Theorem 5.3 in Vranas 2019. Lemma 4 shows

that Definition 2, which quantifies over declarative sentences, is equivalent to a definition of

(strong and weak) validity that does not quantify over declarative sentences (cf. Vranas 2011: 394).

It follows from Lemma 4 that i strongly entails j only if i weakly entails j. Moreover, Lemma 4

has the following consequence (for a proof, see the proof of Theorem 6.2 in Vranas 2019):

COROLLARY 2 (SOUNDNESS OF INFERENCE RULES). For any declarative sentence p and any

imperative sentences i and j: (1) ┌!(p & ~p)┐ strongly (and thus weakly) entails i; (2) i strongly

(and thus weakly) entails ┌p → i┐; (3) ┌i & j┐ weakly entails i.

THEOREM 2 (SOUNDNESS AND COMPLETENESS FOR STRONG AND WEAK DERIVATIONS). A pure

imperative argument , i is (1) strongly valid if (soundness) and only if (completeness) there is

a strong derivation of i from , and is (2) weakly valid if (soundness) and only if (completeness)

there is a weak derivation of i from .

PROOF OF SOUNDNESS. The proof is by induction on the number of lines of a strong or weak

derivation. For the base step, suppose there is a one-line strong (case 1) or weak (case 2) derivation

of i from Γ. In case 1, i is a conjunction of all members of Γ and thus (by Definition 2) Γ strongly

entails i. In case 2, i is (a member or) a conjunction of members of Γ; so, if i is not a conjunction

of all members of Γ (if it is, the proof proceeds as in case 1), there is a conjunction j of the

remaining members of Γ, and ┌i & j┐ is a conjunction of all members of Γ. Then Γ weakly entails

i because, by Definition 2, Γ weakly entails ┌i & j┐, and by Corollary 2, ┌i & j┐ weakly entails i.

For the inductive step, take any non-zero natural number n and suppose (induction hypothesis)

that: (case 1) if there is a strong derivation with at most n lines of i from Γ, then Γ strongly entails

i; (case 2) if there is a weak derivation with at most n lines of i from Γ, then Γ weakly entails i. To

complete the proof, take any strong (case 1) or weak (case 2) derivation with at most n + 1 lines

of i from Γ. Suppose that i is not a conjunction of all (case 1) or some (case 2) members of Γ (if it

is, the proof proceeds as in the base step). Then i can be obtained from an n-th line j (n  n) by

applying once (case 1) ECQ, DAI, or a replacement rule, or (case 2) any inference or replacement

rule. Then (1s) j strongly entails i in case 1 and (1w) j weakly entails i in case 2 (by Corollary 2).

By the induction hypothesis and the fact that the sequence of the first n lines of the strong (case

1) or weak (case 2) derivation of i from Γ is a strong (case 1) or weak (case 2) derivation with at

 15

most n lines of j from Γ, (2s) Γ strongly entails j in case 1, and (2w) Γ weakly entails j in case 2. By

(1s) and (2s), Γ strongly entails i in case 1. Similarly, by (1w) and (2w), Γ weakly entails i in case 2.

PROOF OF COMPLETENESS. Take any pure imperative argument , i and any conjunction i of all

members of Γ. By Lemma 2, (1) i ⟛ ┌p → !q┐ and (2) i ⟛ ┌p → !q┐. Case 1: Γ strongly entails

i. Then (3) i strongly entails i (by Definition 2). Case 1a: i is a contradiction. Then, for any r, i

 ┌!(r & ~r)┐ and thus (by Theorem 1) there is a replacement—and thus a strong—derivation of
┌!(r & ~r)┐ from i. Then there is a strong derivation of i from i (and thus from Γ), since i can be

obtained from ┌!(r & ~r)┐ by ECQ. Case 1b: i is not a contradiction. Then, by (3) and Lemma 4,

i is satisfied on every interpretation on which i is satisfied, and i is violated on every interpretation

on which i is violated. It follows, by CFOL, that (4) p ⟛CFOL ┌p & p┐ and (5) ┌p & q┐ ⟛CFOL ┌p

& q┐. To conclude: there is a strong derivation from Γ of i (by Definition 4), and thus of ┌p → !q┐

(by (2)), and thus of ┌p → (p → !q)┐ (by DAI), and thus of ┌(p & p) → !q┐ (by EX), and thus

of ┌p → !q┐ (by (4) and DR), and thus of ┌p → !(p & q)┐ (by AB), and thus of ┌p → !(p & q)┐

(by (5) and DR), and thus of ┌p → !q┐ (by AB), and thus finally of i (by (1)). Case 2: Γ weakly

entails i. Then i weakly entails i (by Definition 4 and the observation that any member or

conjunction of members of  can be obtained from i by applying replacement rules or ICE or

both). Then, by Lemma 4, i is avoided on every interpretation on which i is avoided, and i is

violated on every interpretation on which i is violated. It follows, by CFOL, that (4) holds and also

(6) ┌p & q┐ ⟛CFOL ┌(q & (p & q)┐. To conclude: there is a weak derivation from Γ of ┌p → !(p

& q)┐ (by (2), DAI, EX, (4) and DR, and AB, as in case 1b), and thus of ┌p → !(q & (p & q))┐

(by (6) and DR), and thus of ┌p → !(p & ((p → q) & (p → q)))┐ (by CFOL and DR), and thus of
┌p → !((p → q) & (p → q))┐ (by AB), and thus of ┌(p  p) → !((p → q) & (p → q))┐ (by CFOL

and DR), and thus of ┌(p → !q) & (p → !q)┐ (by IC), and thus of ┌p → !q┐ (by ICE), and thus

finally of i (by (1)).

REFERENCES

Castañeda, Hector-Neri (1963). Imperatives, decisions, and ‘oughts’: A logico-metaphysical investigation. In H.-N.

Castañeda & G. Nakhnikian (Eds.), Morality and the language of conduct (pp. 219–299). Detroit: Wayne State

University Press.

Castañeda, Hector-Neri (1975). Thinking and doing: The philosophical foundations of institutions. Dordrecht: Reidel.

Castañeda, Hector-Neri (1977). Ought, time, and deontic paradoxes. The Journal of Philosophy, 74, 775-791.

Charlow, Nate (2014). Logic and semantics for imperatives. Journal of Philosophical Logic, 43, 617–664.

Chellas, Brian F. (1971). Imperatives. Theoria: A Swedish Journal of Philosophy, 37, 114–129.

Clark-Younger, Hannah, & Girard, Patrick (2013). Imperatives and entailment. Unpublished.

Clarke, David S., Jr. (1973). Deductive logic: An introduction to evaluation techniques and logical theory. Carbondale,

IL: Southern Illinois University Press.

Clarke, David S., Jr., & Behling, Richard (1998). Deductive logic: An introduction to evaluation techniques and

logical theory (2nd ed.). Lanham, MD: University Press of America.

Fine, Kit. (2018). Compliance and command I—Categorical Imperatives. The Review of Symbolic Logic, 11, 609–

633.

Fox, Chris (2012). Imperatives: A judgemental analysis. Studia Logica, 100, 879–905.

Gensler, Harry J. (1990). Symbolic logic: Classical and advanced systems. Englewood Cliffs, NJ: Prentice-Hall.

Gensler, Harry J. (1996). Formal ethics. New York: Routledge.

Gensler, Harry J. (2002). Introduction to logic. New York: Routledge.

Hansen, Jörg (2014). Be nice! How simple imperatives simplify imperative logic. Journal of Philosophical Logic, 43,

965–977.

Hofstadter, Albert, & McKinsey, John C. C. (1939). On the logic of imperatives. Philosophy of Science, 6, 446-457.

Kaufmann, Magdalena (2012). Interpreting imperatives. New York: Springer.

 16

Ludwig, Kirk (1997). The truth about moods. In G. Preyer (Ed.), Protosociology: An international journal of

interdisciplinary research: Vol. 10. Cognitive semantics I⎯Conceptions of meaning (pp. 19–66). Frankfurt:

Frankfurt University.

Mally, Ernst (1926). Grandgesetze des Sollens: Elemente der Logik des Willens. Graz: Leuschner & Lubensky.

Parsons, Josh (2013). Command and consequence. Philosophical Studies, 164, 61–92.

Quine, Willard V. (1953). Three grades of modal involvement. In Proceedings of the XIth International Congress of

Philosophy: Vol. XIV. Additional volume and contributions to the symposium on logic, Brussels, August 20–26,

1953 (pp. 65–81). Louvain: North-Holland & E. Nauwelaerts.

Rescher, Nicholas (1966). The logic of commands. London: Routledge & Kegan Paul.

Ross, Alf (1941). Imperatives and logic. Theoria: A Swedish Journal of Philosophy, 7, 53–71.

Segerberg, Krister (1990). Validity and satisfaction in imperative logic. Notre Dame Journal of Formal Logic, 31,

203–221.

Skorupski, John (2010). The domain of reasons. New York: Oxford University Press.

Starr, William B. (2020). A preference semantics for imperatives. Semantics & Pragmatics, 13(6), 1–60.

Vranas, Peter B. M. (2008). New foundations for imperative logic I: Logical connectives, consistency, and quantifiers.

Noûs, 42, 529–572.

Vranas, Peter B. M. (2010). In defense of imperative inference. Journal of Philosophical Logic, 39, 59–71.

Vranas, Peter B. M. (2011). New foundations for imperative logic: Pure imperative inference. Mind, 120, 369–446.

Vranas, Peter B. M. (2013). Imperatives, logic of. In H. LaFollette (Ed.), International encyclopedia of ethics (Vol. 5,

pp. 2575–2585). Oxford: Blackwell.

Vranas, Peter B. M. (2016). New foundations for imperative logic III: A general definition of argument validity.

Synthese,193, 1703–1753.

Vranas, Peter B. M. (2019). New foundations for imperative logic IV: Natural deduction. Journal of Applied Logics,

6, 431–446.

	28 April 2023

